Home
Search results “Classification data mining algorithms implementation”
Decision Tree Algorithm | Decision Tree in Python | Machine Learning Algorithms | Edureka
 
46:38
** Machine Learning with Python : https://www.edureka.co/machine-learning-certification-training ** This Edureka video on Decision Tree Algorithm in Python will take you through the fundamentals of decision tree machine learning algorithm concepts and its demo in Python. Below are the topics covered in this tutorial: 1. What is Classification? 2. Types of Classification 3. Classification Use Case 4. What is Decision Tree? 5. Decision Tree Terminology 6. Visualizing a Decision Tree 7 Writing a Decision Tree Classifier fro Scratch in Python using CART Algorithm Subscribe to our channel to get video updates. Hit the subscribe button above. Check out our Python Machine Learning Playlist: https://goo.gl/UxjTxm #decisiontree #decisiontreepython #machinelearningalgorithms - - - - - - - - - - - - - - - - - About the Course Edureka’s Machine Learning Course using Python is designed to make you grab the concepts of Machine Learning. The Machine Learning training will provide deep understanding of Machine Learning and its mechanism. As a Data Scientist, you will be learning the importance of Machine Learning and its implementation in python programming language. Furthermore, you will be taught Reinforcement Learning which in turn is an important aspect of Artificial Intelligence. You will be able to automate real life scenarios using Machine Learning Algorithms. Towards the end of the course, we will be discussing various practical use cases of Machine Learning in python programming language to enhance your learning experience. After completing this Machine Learning Certification Training using Python, you should be able to: Gain insight into the 'Roles' played by a Machine Learning Engineer Automate data analysis using python Describe Machine Learning Work with real-time data Learn tools and techniques for predictive modeling Discuss Machine Learning algorithms and their implementation Validate Machine Learning algorithms Explain Time Series and it’s related concepts Gain expertise to handle business in future, living the present - - - - - - - - - - - - - - - - - - - Why learn Machine Learning with Python? Data Science is a set of techniques that enables the computers to learn the desired behavior from data without explicitly being programmed. It employs techniques and theories drawn from many fields within the broad areas of mathematics, statistics, information science, and computer science. This course exposes you to different classes of machine learning algorithms like supervised, unsupervised and reinforcement algorithms. This course imparts you the necessary skills like data pre-processing, dimensional reduction, model evaluation and also exposes you to different machine learning algorithms like regression, clustering, decision trees, random forest, Naive Bayes and Q-Learning. For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka
Views: 59623 edureka!
Naive Bayes Classifier in Python | Naive Bayes Algorithm | Machine Learning Algorithm | Edureka
 
30:19
** Machine Learning Training with Python: https://www.edureka.co/python ** This Edureka video will provide you with a detailed and comprehensive knowledge of Naive Bayes Classifier Algorithm in python. At the end of the video, you will learn from a demo example on Naive Bayes. Below are the topics covered in this tutorial: 1. What is Naive Bayes? 2. Bayes Theorem and its use 3. Mathematical Working of Naive Bayes 4. Step by step Programming in Naive Bayes 5. Prediction Using Naive Bayes Check out our playlist for more videos: http://bit.ly/2taym8X Subscribe to our channel to get video updates. Hit the subscribe button above. #MachineLearningUsingPython #MachineLearningTraning How it Works? 1. This is a 5 Week Instructor led Online Course,40 hours of assignment and 20 hours of project work 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. At the end of the training, you will be working on a real-time project for which we will provide you a Grade and a Verifiable Certificate! - - - - - - - - - - - - - - - - - About the Course Edureka’s Machine Learning Course using Python is designed to make you grab the concepts of Machine Learning. The Machine Learning training will provide deep understanding of Machine Learning and its mechanism. As a Data Scientist, you will be learning the importance of Machine Learning and its implementation in python programming language. Furthermore, you will be taught Reinforcement Learning which in turn is an important aspect of Artificial Intelligence. You will be able to automate real life scenarios using Machine Learning Algorithms. Towards the end of the course, we will be discussing various practical use cases of Machine Learning in python programming language to enhance your learning experience. After completing this Machine Learning Certification Training using Python, you should be able to: Gain insight into the 'Roles' played by a Machine Learning Engineer Automate data analysis using python Describe Machine Learning Work with real-time data Learn tools and techniques for predictive modeling Discuss Machine Learning algorithms and their implementation Validate Machine Learning algorithms Explain Time Series and it’s related concepts Gain expertise to handle business in future, living the present - - - - - - - - - - - - - - - - - - - Why learn Machine Learning with Python? Data Science is a set of techniques that enable the computers to learn the desired behavior from data without explicitly being programmed. It employs techniques and theories drawn from many fields within the broad areas of mathematics, statistics, information science, and computer science. This course exposes you to different classes of machine learning algorithms like supervised, unsupervised and reinforcement algorithms. This course imparts you the necessary skills like data pre-processing, dimensional reduction, model evaluation and also exposes you to different machine learning algorithms like regression, clustering, decision trees, random forest, Naive Bayes and Q-Learning. For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka
Views: 28329 edureka!
Data Mining Lecture -- Bayesian Classification | Naive Bayes Classifier | Solved Example (Eng-Hindi)
 
09:02
In the bayesian classification The final ans doesn't matter in the calculation Because there is no need of value for the decision you have to simply identify which one is greater and therefore you can find the final result. -~-~~-~~~-~~-~- Please watch: "PL vs FOL | Artificial Intelligence | (Eng-Hindi) | #3" https://www.youtube.com/watch?v=GS3HKR6CV8E -~-~~-~~~-~~-~-
Views: 166151 Well Academy
KNN Algorithm using Python | How KNN Algorithm works | Python Data Science Training | Edureka
 
19:52
** Python for Data Science: https://www.edureka.co/python ** This Edureka video on KNN Algorithm will help you to build your base by covering the theoretical, mathematical and implementation part of the KNN algorithm in Python. Topics covered under this video includes: 1. What is KNN Algorithm? 2. Industrial Use case of KNN Algorithm 3. How things are predicted using KNN Algorithm 4. How to choose the value of K? 5. KNN Algorithm Using Python 6. Implementation of KNN Algorithm from scratch Check out our playlist for more videos: http://bit.ly/2taym8X Subscribe to our channel to get video updates. Hit the subscribe button above. #KNNAlgorithm #MachineLearningUsingPython #MachineLearningTraining How it Works? 1. This is a 5 Week Instructor led Online Course,40 hours of assignment and 20 hours of project work 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. At the end of the training you will be working on a real time project for which we will provide you a Grade and a Verifiable Certificate! - - - - - - - - - - - - - - - - - About the Course Edureka’s Machine Learning Course using Python is designed to make you grab the concepts of Machine Learning. The Machine Learning training will provide deep understanding of Machine Learning and its mechanism. As a Data Scientist, you will be learning the importance of Machine Learning and its implementation in python programming language. Furthermore, you will be taught Reinforcement Learning which in turn is an important aspect of Artificial Intelligence. You will be able to automate real life scenarios using Machine Learning Algorithms. Towards the end of the course, we will be discussing various practical use cases of Machine Learning in python programming language to enhance your learning experience. After completing this Machine Learning Certification Training using Python, you should be able to: Gain insight into the 'Roles' played by a Machine Learning Engineer Automate data analysis using python Describe Machine Learning Work with real-time data Learn tools and techniques for predictive modeling Discuss Machine Learning algorithms and their implementation Validate Machine Learning algorithms Explain Time Series and it’s related concepts Gain expertise to handle business in future, living the present - - - - - - - - - - - - - - - - - - - Why learn Machine Learning with Python? Data Science is a set of techniques that enables the computers to learn the desired behavior from data without explicitly being programmed. It employs techniques and theories drawn from many fields within the broad areas of mathematics, statistics, information science, and computer science. This course exposes you to different classes of machine learning algorithms like supervised, unsupervised and reinforcement algorithms. This course imparts you the necessary skills like data pre-processing, dimensional reduction, model evaluation and also exposes you to different machine learning algorithms like regression, clustering, decision trees, random forest, Naive Bayes and Q-Learning. For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka
Views: 42863 edureka!
Data Mining Lecture -- Decision Tree | Solved Example (Eng-Hindi)
 
29:13
-~-~~-~~~-~~-~- Please watch: "PL vs FOL | Artificial Intelligence | (Eng-Hindi) | #3" https://www.youtube.com/watch?v=GS3HKR6CV8E -~-~~-~~~-~~-~-
Views: 181246 Well Academy
Weka Tutorial 03: Classification 101 using Explorer (Classification)
 
14:58
In this tutorial, classification using Weka Explorer is demonstrated. This is the very basic tutorial where a simple classifier is applied on a dataset in a 10 Fold CV. For more variations of classification, watch out other tutorials on this channel.
Views: 155312 Rushdi Shams
Decision Tree Algorithm & Analysis | Machine Learning Algorithm | Data Science Training | Edureka
 
01:21:31
( Data Science Training - https://www.edureka.co/data-science ) This Edureka Decision Tree tutorial will help you understand all the basics of Decision tree. This decision tree tutorial is ideal for both beginners as well as professionals who want to learn or brush up their Data Science concepts, learn decision tree analysis along with examples. Below are the topics covered in this tutorial: 1) Machine Learning Introduction 2) Classification 3) Types of classifiers 4) Decision tree 5) How does Decision tree work? 6) Demo in R Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Data Science playlist here: https://goo.gl/60NJJS #decisiontree #Datasciencetutorial #Datasciencecourse #datascience How it Works? 1. There will be 30 hours of instructor-led interactive online classes, 40 hours of assignments and 20 hours of project 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. You will get Lifetime Access to the recordings in the LMS. 4. At the end of the training you will have to complete the project based on which we will provide you a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyse Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyse data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Reviews: Gnana Sekhar Vangara, Technology Lead at WellsFargo.com, says, "Edureka Data science course provided me a very good mixture of theoretical and practical training. The training course helped me in all areas that I was previously unclear about, especially concepts like Machine learning and Mahout. The training was very informative and practical. LMS pre recorded sessions and assignmemts were very good as there is a lot of information in them that will help me in my job. The trainer was able to explain difficult to understand subjects in simple terms. Edureka is my teaching GURU now...Thanks EDUREKA and all the best. "
Views: 61950 edureka!
Let’s Write a Decision Tree Classifier from Scratch - Machine Learning Recipes #8
 
09:53
Hey everyone! Glad to be back! Decision Tree classifiers are intuitive, interpretable, and one of my favorite supervised learning algorithms. In this episode, I’ll walk you through writing a Decision Tree classifier from scratch, in pure Python. I’ll introduce concepts including Decision Tree Learning, Gini Impurity, and Information Gain. Then, we’ll code it all up. Understanding how to accomplish this was helpful to me when I studied Machine Learning for the first time, and I hope it will prove useful to you as well. You can find the code from this video here: https://goo.gl/UdZoNr https://goo.gl/ZpWYzt Books! Hands-On Machine Learning with Scikit-Learn and TensorFlow https://goo.gl/kM0anQ Follow Josh on Twitter: https://twitter.com/random_forests Check out more Machine Learning Recipes here: https://goo.gl/KewA03 Subscribe to the Google Developers channel: http://goo.gl/mQyv5L
Views: 206615 Google Developers
Text Classification Using Naive Bayes
 
16:29
This is a low math introduction and tutorial to classifying text using Naive Bayes. One of the most seminal methods to do so.
Views: 96868 Francisco Iacobelli
Naive Bayes Classifier Tutorial | Naive Bayes Classifier Example | Naive Bayes in R | Edureka
 
01:04:06
( Data Science Training - https://www.edureka.co/data-science ) This Naive Bayes Tutorial video from Edureka will help you understand all the concepts of Naive Bayes classifier, use cases and how it can be used in the industry. This video is ideal for both beginners as well as professionals who want to learn or brush up their concepts in Data Science and Machine Learning through Naive Bayes. Below are the topics covered in this tutorial: 1. What is Machine Learning? 2. Introduction to Classification 3. Classification Algorithms 4. What is Naive Bayes? 5. Use Cases of Naive Bayes 6. Demo – Employee Salary Prediction in R Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Data Science playlist here: https://goo.gl/60NJJS #NaiveBayes #NaiveBayesTutorial #DataScienceTraining #Datascience #Edureka How it Works? 1. There will be 30 hours of instructor-led interactive online classes, 40 hours of assignments and 20 hours of project 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. You will get Lifetime Access to the recordings in the LMS. 4. At the end of the training you will have to complete the project based on which we will provide you a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyse Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyse data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Reviews: Gnana Sekhar Vangara, Technology Lead at WellsFargo.com, says, "Edureka Data science course provided me a very good mixture of theoretical and practical training. The training course helped me in all areas that I was previously unclear about, especially concepts like Machine learning and Mahout. The training was very informative and practical. LMS pre recorded sessions and assignmemts were very good as there is a lot of information in them that will help me in my job. The trainer was able to explain difficult to understand subjects in simple terms. Edureka is my teaching GURU now...Thanks EDUREKA and all the best."
Views: 46863 edureka!
Decision Tree 1: how it works
 
09:26
Full lecture: http://bit.ly/D-Tree A Decision Tree recursively splits training data into subsets based on the value of a single attribute. Each split corresponds to a node in the. Splitting stops when every subset is pure (all elements belong to a single class) -- this can always be achieved, unless there are duplicate training examples with different classes.
Views: 509199 Victor Lavrenko
K mean clustering algorithm with solve example
 
12:13
#kmean datawarehouse #datamining #lastmomenttuitions Take the Full Course of Datawarehouse What we Provide 1)22 Videos (Index is given down) + Update will be Coming Before final exams 2)Hand made Notes with problems for your to practice 3)Strategy to Score Good Marks in DWM To buy the course click here: https://lastmomenttuitions.com/course/data-warehouse/ Buy the Notes https://lastmomenttuitions.com/course/data-warehouse-and-data-mining-notes/ if you have any query email us at [email protected] Index Introduction to Datawarehouse Meta data in 5 mins Datamart in datawarehouse Architecture of datawarehouse how to draw star schema slowflake schema and fact constelation what is Olap operation OLAP vs OLTP decision tree with solved example K mean clustering algorithm Introduction to data mining and architecture Naive bayes classifier Apriori Algorithm Agglomerative clustering algorithmn KDD in data mining ETL process FP TREE Algorithm Decision tree
Views: 354627 Last moment tuitions
Linear Regression - Machine Learning Fun and Easy
 
07:47
Linear Regression - Machine Learning Fun and Easy ►FREE YOLO GIFT - http://augmentedstartups.info/yolofreegiftsp ►KERAS Course - https://www.udemy.com/machine-learning-fun-and-easy-using-python-and-keras/?couponCode=YOUTUBE_ML ►MACHIN LEARNING COURSE - http://augmentedstartups.info/machine-learning-courses ---------------------------------------------------------------------------- Hi and welcome to a new lecture in the Fun and Easy Machine Learning Series. Today I’ll be talking about Linear Regression. We show you also how implement a linear regression in excel Linear regression attempts to model the relationship between two variables by fitting a linear equation to observed data. One variable is considered to be an explanatory variable, and the other is considered to be a dependent variable. Dependent Variable – Variable who’s values we want to explain or forecast Independent or explanatory Variable that Explains the other variable. Values are independent. Dependent variable can be denoted as y, so imagine a child always asking y is he dependent on his parents. And then you can imagine the X as your ex boyfriend/girlfriend who is independent because they don’t need or depend on you. A good way to remember it. Anyways Used for 2 Applications To Establish if there is a relation between 2 variables or see if there is statistically signification relationship between the two variables- • To see how increase in sin tax has an effect on how many cigarettes packs are consumed • Sleep hours vs test scores • Experience vs Salary • Pokemon vs Urban Density • House floor area vs House price Forecast new observations – Can use what we know to forecast unobserved values Here are some other examples of ways that linear regression can be applied. • So say the sales of ROI of Fidget spinners over time. • Stock price over time • Predict price of Bitcoin over time. Linear Regression is also known as the line of best fit The line of best fit can be represented by the linear equation y = a + bx or y = mx + b or y = b0+b1x You most likely learnt this in school. So b is is the intercept, if you increase this variable, your intercept moves up or down along the y axis. M is your slope or gradient, if you change this, then your line rotates along the intercept. Data is actually a series of x and y observations as shown on this scatter plot. They do not follow a straight line however they do follow a linear pattern hence the term linear regression Assuming we already have the best fit line, We can calculate the error term Epsilon. Also known as the Residual. And this is the term that we would like to minimize along all the points in the data series. So say if we have our linear equation but also represented in statisitical notation. The residual fit in to our equation as shown y = b0+b1x + e ------------------------------------------------------------ Support us on Patreon ►AugmentedStartups.info/Patreon Chat to us on Discord ►AugmentedStartups.info/discord Interact with us on Facebook ►AugmentedStartups.info/Facebook Check my latest work on Instagram ►AugmentedStartups.info/instagram Learn Advanced Tutorials on Udemy ►AugmentedStartups.info/udemy ------------------------------------------------------------ To learn more on Artificial Intelligence, Augmented Reality IoT, Deep Learning FPGAs, Arduinos, PCB Design and Image Processing then check out http://augmentedstartups.info/home Please Like and Subscribe for more videos :)
Views: 135083 Augmented Startups
Naïve Bayes Classifier -  Fun and Easy Machine Learning
 
11:59
Naive Bayes Classifier- Fun and Easy Machine Learning ►FREE YOLO GIFT - http://augmentedstartups.info/yolofreegiftsp ►KERAS COURSE - https://www.udemy.com/machine-learning-fun-and-easy-using-python-and-keras/?couponCode=YOUTUBE_ML ►MACHINE LEARNING COURSES - http://augmentedstartups.info/machine-learning-courses -------------------------------------------------------------------------------- Now Naïve Bayes is based on Bayes Theorem also known as conditional Theorem, which you can think of it as an evidence theorem or trust theorem. So basically how much can you trust the evidence that is coming in, and it’s a formula that describes how much you should believe the evidence that you are being presented with. An example would be a dog barking in the middle of the night. If the dog always barks for no good reason, you would become desensitized to it and not go check if anything is wrong, this is known as false positives. However if the dog barks only whenever someone enters your premises, you’d be more likely to act on the alert and trust or rely on the evidence from the dog. So Bayes theorem is a mathematic formula for how much you should trust evidence. So lets take a look deeper at the formula, • We can start of with the Prior Probability which describes the degree to which we believe the model accurately describes reality based on all of our prior information, So how probable was our hypothesis before observing the evidence. • Here we have the likelihood which describes how well the model predicts the data. This is term over here is the normalizing constant, the constant that makes the posterior density integrate to one. Like we seen over here. • And finally the output that we want is the posterior probability which represents the degree to which we believe a given model accurately describes the situation given the available data and all of our prior information. So how probable is our hypothesis given the observed evidence. So with our example above. We can view the probability that we play golf given it is sunny = the probability that we play golf given a yes times the probability it being sunny divided by probability of a yes. This uses the golf example to explain Naive Bayes. ------------------------------------------------------------ Support us on Patreon ►AugmentedStartups.info/Patreon Chat to us on Discord ►AugmentedStartups.info/discord Interact with us on Facebook ►AugmentedStartups.info/Facebook Check my latest work on Instagram ►AugmentedStartups.info/instagram Learn Advanced Tutorials on Udemy ►AugmentedStartups.info/udemy ------------------------------------------------------------ To learn more on Artificial Intelligence, Augmented Reality IoT, Deep Learning FPGAs, Arduinos, PCB Design and Image Processing then check out http://augmentedstartups.info/home Please Like and Subscribe for more videos :)
Views: 136945 Augmented Startups
Naive Bayes algorithm in Machine learning Program | Text Classification python (2018)
 
28:53
We have implemented Text Classification in Python using Naive Bayes Classifier. It explains the text classification algorithm from beginner to pro. For understanding the co behind it, refer: https://www.youtube.com/watch?v=Zt83JnjD8zg Here, we have used 20 Newsgroup dataset to train our model for the classification. Link to download the 20 Newsgroup dataset: http://qwone.com/~jason/20Newsgroups/20news-bydate.tar.gz Packages used here are: 1. sklearn 2. Tfidf Vectorizer 3. Multinomial Naive Bayes Classifier 4. Pipeline 5. Metrics Refer the entire code at: https://github.com/codewrestling/TextClassification/blob/master/Text%20Classification.py For slides, refer: https://github.com/codewrestling/TextClassification/raw/master/Text%20Classification.pdf Follow us on Github for more codes: https://github.com/codewrestling machine learning python beginner,machine learning python basics,machine learning python regression,machine learning game python,machine learning applications python
Views: 6683 Code Wrestling
Naive Bayes Classifier | Naive Bayes Algorithm | Naive Bayes Classifier With Example | Simplilearn
 
43:45
This Naive Bayes Classifier tutorial video will introduce you to the basic concepts of Naive Bayes classifier, what is Naive Bayes and Bayes theorem, conditional probability concepts used in Bayes theorem, where is Naive Bayes classifier used, how Naive Bayes algorithm works with solved examples, advantages of Naive Bayes. By the end of this video, you will also implement Naive Bayes algorithm for text classification in Python. The topics covered in this Naive Bayes video are as follows: 1. What is Naive Bayes? ( 01:06 ) 2. Naive Bayes and Machine Learning ( 05:45 ) 3. Why do we need Naive Bayes? ( 05:46 ) 4. Understanding Naive Bayes Classifier ( 06:30 ) 5. Advantages of Naive Bayes Classifier ( 20:17 ) 6. Demo - Text Classification using Naive Bayes ( 22:36 ) To learn more about Machine Learning, subscribe to our YouTube channel: https://www.youtube.com/user/Simplilearn?sub_confirmation=1 You can also go through the Slides here: https://goo.gl/Cw9wqy #NaiveBayes #MachineLearningAlgorithms #DataScienceCourse #DataScience #SimplilearnMachineLearning - - - - - - - - Simplilearn’s Machine Learning course will make you an expert in Machine Learning, a form of Artificial Intelligence that automates data analysis to enable computers to learn and adapt through experience to do specific tasks without explicit programming. You will master Machine Learning concepts and techniques including supervised and unsupervised learning, mathematical and heuristic aspects, hands-on modeling to develop algorithms and prepare you for the role of Machine Learning Engineer Why learn Machine Learning? Machine Learning is rapidly being deployed in all kinds of industries, creating a huge demand for skilled professionals. The Machine Learning market size is expected to grow from USD 1.03 billion in 2016 to USD 8.81 billion by 2022, at a Compound Annual Growth Rate (CAGR) of 44.1% during the forecast period. You can gain in-depth knowledge of Machine Learning by taking our Machine Learning certification training course. With Simplilearn’s Machine Learning course, you will prepare for a career as a Machine Learning engineer as you master concepts and techniques including supervised and unsupervised learning, mathematical and heuristic aspects, and hands-on modeling to develop algorithms. Those who complete the course will be able to: 1. Master the concepts of supervised, unsupervised and reinforcement learning concepts and modeling. 2. Gain practical mastery over principles, algorithms, and applications of Machine Learning through a hands-on approach which includes working on 28 projects and one capstone project. 3. Acquire thorough knowledge of the mathematical and heuristic aspects of Machine Learning. 4. Understand the concepts and operation of support vector machines, kernel SVM, Naive Bayes, decision tree classifier, random forest classifier, logistic regression, K-nearest neighbors, K-means clustering and more. 5. Model a wide variety of robust Machine Learning algorithms including deep learning, clustering, and recommendation systems The Machine Learning Course is recommended for: 1. Developers aspiring to be a data scientist or Machine Learning engineer 2. Information architects who want to gain expertise in Machine Learning algorithms 3. Analytics professionals who want to work in Machine Learning or artificial intelligence 4. Graduates looking to build a career in data science and Machine Learning Learn more at: https://www.simplilearn.com/big-data-and-analytics/machine-learning-certification-training-course?utm_campaign=Naive-Bayes-Classifier-l3dZ6ZNFjo0&utm_medium=Tutorials&utm_source=youtube For more information about Simplilearn’s courses, visit: - Facebook: https://www.facebook.com/Simplilearn - Twitter: https://twitter.com/simplilearn - LinkedIn: https://www.linkedin.com/company/simp... - Website: https://www.simplilearn.com Get the Android app: http://bit.ly/1WlVo4u Get the iOS app: http://apple.co/1HIO5J0
Views: 37614 Simplilearn
Decision Tree C4.5 Implementation
 
06:55
Data Mining Project -- C4.5 Decision Tree Implementation CMU Team Supernova
Views: 14242 Charlotte Lin
Machine Learning Algorithms | Machine Learning Tutorial | Data Science Training | Edureka
 
45:16
( Data Science Training - https://www.edureka.co/data-science ) This Machine Learning Algorithms Tutorial shall teach you what machine learning is, and the various ways in which you can use machine learning to solve a problem! Towards the end, you will learn how to prepare a dataset for model creation and validation and how you can create a model using any machine learning algorithm! In this Machine Learning Algorithms Tutorial video you will understand: 1) What is an Algorithm? 2) What is Machine Learning? 3) How is a problem solved using Machine Learning? 4) Types of Machine Learning 5) Machine Learning Algorithms 6) Demo Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Data Science playlist here: https://goo.gl/60NJJS #MachineLearningAlgorithms #Datasciencetutorial #Datasciencecourse #datascience How it Works? 1. There will be 30 hours of instructor-led interactive online classes, 40 hours of assignments and 20 hours of project 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. You will get Lifetime Access to the recordings in the LMS. 4. At the end of the training you will have to complete the project based on which we will provide you a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyse Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyse data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Reviews: Gnana Sekhar Vangara, Technology Lead at WellsFargo.com, says, "Edureka Data science course provided me a very good mixture of theoretical and practical training. The training course helped me in all areas that I was previously unclear about, especially concepts like Machine learning and Mahout. The training was very informative and practical. LMS pre recorded sessions and assignmemts were very good as there is a lot of information in them that will help me in my job. The trainer was able to explain difficult to understand subjects in simple terms. Edureka is my teaching GURU now...Thanks EDUREKA and all the best. "
Views: 166238 edureka!
How KNN algrorithm works with example : K - Nearest Neighbor
 
08:33
How KNN algorithm works with example: K - Nearest Neighbor, Classifiers, Data Mining, Knowledge Discovery, Data Analytics
Views: 126167 shreyans jain
Data Mining Lecture - - Finding frequent item sets | Apriori Algorithm | Solved Example (Eng-Hindi)
 
13:19
In this video Apriori algorithm is explained in easy way in data mining Thank you for watching share with your friends Follow on : Facebook : https://www.facebook.com/wellacademy/ Instagram : https://instagram.com/well_academy Twitter : https://twitter.com/well_academy data mining in hindi, Finding frequent item sets, data mining, data mining algorithms in hindi, data mining lecture, data mining tools, data mining tutorial,
Views: 211589 Well Academy
Decision Tree Algorithm With Example | Decision Tree In Machine Learning | Data Science |Simplilearn
 
32:40
This Decision Tree algorithm in Machine Learning tutorial video will help you understand all the basics of Decision Tree along with what is Machine Learning, problems in Machine Learning, what is Decision Tree, advantages and disadvantages of Decision Tree, how Decision Tree algorithm works with solved examples and at the end we will implement a Decision Tree use case/ demo in Python on loan payment prediction. This Decision Tree tutorial is ideal for both beginners as well as professionals who want to learn Machine Learning Algorithms. Below topics are covered in this Decision Tree Algorithm Tutorial: 1. What is Machine Learning? ( 02:25 ) 2. Types of Machine Learning? ( 03:27 ) 3. Problems in Machine Learning ( 04:43 ) 4. What is Decision Tree? ( 06:29 ) 5. What are the problems a Decision Tree Solves? ( 07:11 ) 6. Advantages of Decision Tree ( 07:54 ) 7. How does Decision Tree Work? ( 10:55 ) 8. Use Case - Loan Repayment Prediction ( 14:32 ) What is Machine Learning: Machine Learning is an application of Artificial Intelligence (AI) that provides systems the ability to automatically learn and improve from experience without being explicitly programmed. Subscribe to our channel for more Machine Learning Tutorials: https://www.youtube.com/user/Simplilearn?sub_confirmation=1 Machine Learning Articles: https://www.simplilearn.com/what-is-artificial-intelligence-and-why-ai-certification-article?utm_campaign=Decision-Tree-Algorithm-With-Example-RmajweUFKvM&utm_medium=Tutorials&utm_source=youtube To gain in-depth knowledge of Machine Learning, check our Machine Learning certification training course: https://www.simplilearn.com/big-data-and-analytics/machine-learning-certification-training-course?utm_campaign=Decision-Tree-Algorithm-With-Example-RmajweUFKvM&utm_medium=Tutorials&utm_source=youtube #MachineLearningAlgorithms #Datasciencecourse #DataScience #SimplilearnMachineLearning #MachineLearningCourse - - - - - - - - About Simplilearn Machine Learning course: A form of artificial intelligence, Machine Learning is revolutionizing the world of computing as well as all people’s digital interactions. Machine Learning powers such innovative automated technologies as recommendation engines, facial recognition, fraud protection and even self-driving cars.This Machine Learning course prepares engineers, data scientists and other professionals with knowledge and hands-on skills required for certification and job competency in Machine Learning. - - - - - - - Why learn Machine Learning? Machine Learning is taking over the world- and with that, there is a growing need among companies for professionals to know the ins and outs of Machine Learning The Machine Learning market size is expected to grow from USD 1.03 Billion in 2016 to USD 8.81 Billion by 2022, at a Compound Annual Growth Rate (CAGR) of 44.1% during the forecast period. - - - - - - What skills will you learn from this Machine Learning course? By the end of this Machine Learning course, you will be able to: 1. Master the concepts of supervised, unsupervised and reinforcement learning concepts and modeling. 2. Gain practical mastery over principles, algorithms, and applications of Machine Learning through a hands-on approach which includes working on 28 projects and one capstone project. 3. Acquire thorough knowledge of the mathematical and heuristic aspects of Machine Learning. 4. Understand the concepts and operation of support vector machines, kernel SVM, naive Bayes, decision tree classifier, random forest classifier, logistic regression, K-nearest neighbors, K-means clustering and more. 5. Be able to model a wide variety of robust Machine Learning algorithms including deep learning, clustering, and recommendation systems - - - - - - - Who should take this Machine Learning Training Course? We recommend this Machine Learning training course for the following professionals in particular: 1. Developers aspiring to be a data scientist or Machine Learning engineer 2. Information architects who want to gain expertise in Machine Learning algorithms 3. Analytics professionals who want to work in Machine Learning or artificial intelligence 4. Graduates looking to build a career in data science and Machine Learning - - - - - - For more updates on courses and tips follow us on: - Facebook: https://www.facebook.com/Simplilearn - Twitter: https://twitter.com/simplilearn - LinkedIn: https://www.linkedin.com/company/simplilearn - Website: https://www.simplilearn.com Get the Android app: http://bit.ly/1WlVo4u Get the iOS app: http://apple.co/1HIO5J0
Views: 39996 Simplilearn
K Means Clustering Algorithm | K Means Example in Python | Machine Learning Algorithms | Edureka
 
27:05
** Python Training for Data Science: https://www.edureka.co/python ** This Edureka Machine Learning tutorial (Machine Learning Tutorial with Python Blog: https://goo.gl/fe7ykh ) series presents another video on "K-Means Clustering Algorithm". Within the video you will learn the concepts of K-Means clustering and its implementation using python. Below are the topics covered in today's session: 1. What is Clustering? 2. Types of Clustering 3. What is K-Means Clustering? 4. How does a K-Means Algorithm works? 5. K-Means Clustering Using Python Machine Learning Tutorial Playlist: https://goo.gl/UxjTxm Subscribe to our channel to get video updates. Hit the subscribe button above. How it Works? 1. This is a 5 Week Instructor led Online Course,40 hours of assignment and 20 hours of project work 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. At the end of the training you will be working on a real time project for which we will provide you a Grade and a Verifiable Certificate! - - - - - - - - - - - - - - - - - About the Course Edureka's Python Online Certification Training will make you an expert in Python programming. It will also help you learn Python the Big data way with integration of Machine learning, Pig, Hive and Web Scraping through beautiful soup. During our Python Certification training, our instructors will help you: 1. Programmatically download and analyze data 2. Learn techniques to deal with different types of data – ordinal, categorical, encoding 3. Learn data visualization 4. Using I python notebooks, master the art of presenting step by step data analysis 5. Gain insight into the 'Roles' played by a Machine Learning Engineer 6. Describe Machine Learning 7. Work with real-time data 8. Learn tools and techniques for predictive modeling 9. Discuss Machine Learning algorithms and their implementation 10. Validate Machine Learning algorithms 11. Explain Time Series and its related concepts 12. Perform Text Mining and Sentimental analysis 13. Gain expertise to handle business in future, living the present - - - - - - - - - - - - - - - - - - - Why learn Python? Programmers love Python because of how fast and easy it is to use. Python cuts development time in half with its simple to read syntax and easy compilation feature. Debugging your programs is a breeze in Python with its built in debugger. Using Python makes Programmers more productive and their programs ultimately better. Python continues to be a favorite option for data scientists who use it for building and using Machine learning applications and other scientific computations. Python runs on Windows, Linux/Unix, Mac OS and has been ported to Java and .NET virtual machines. Python is free to use, even for the commercial products, because of its OSI-approved open source license. Python has evolved as the most preferred Language for Data Analytics and the increasing search trends on python also indicates that Python is the next "Big Thing" and a must for Professionals in the Data Analytics domain. For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Review Sairaam Varadarajan, Data Evangelist at Medtronic, Tempe, Arizona: "I took Big Data and Hadoop / Python course and I am planning to take Apache Mahout thus becoming the "customer of Edureka!". Instructors are knowledge... able and interactive in teaching. The sessions are well structured with a proper content in helping us to dive into Big Data / Python. Most of the online courses are free, edureka charges a minimal amount. Its acceptable for their hard-work in tailoring - All new advanced courses and its specific usage in industry. I am confident that, no other website which have tailored the courses like Edureka. It will help for an immediate take-off in Data Science and Hadoop working."
Views: 34738 edureka!
How kNN algorithm works
 
04:42
In this video I describe how the k Nearest Neighbors algorithm works, and provide a simple example using 2-dimensional data and k = 3. This presentation is available at: http://prezi.com/ukps8hzjizqw/?utm_campaign=share&utm_medium=copy
Views: 416394 Thales Sehn Körting
Random Forest - Fun and Easy Machine Learning
 
07:38
Random Forest - Fun and Easy Machine Learning ►FREE YOLO GIFT - http://augmentedstartups.info/yolofreegiftsp ►KERAS COURSE - https://www.udemy.com/machine-learning-fun-and-easy-using-python-and-keras/?couponCode=YOUTUBE_ML ►MACHINE LEARNING COURSES -http://augmentedstartups.info/machine-learning-courses ------------------------------------------------------------------------ Hey Guys, and welcome to another Fun and Easy Machine Learning Algorithm on Random Forests. Random forest algorithm is a one of the most popular and most powerful supervised Machine Learning algorithm in Machine Learning that is capable of performing both regression and classification tasks. As the name suggest, this algorithm creates the forest with a number of decision trees. In general, the more trees in the forest the more robust the prediction. In the same way in the random forest classifier, the higher the number of trees in the forest gives the high accuracy results. To model multiple decision trees to create the forest you are not going to use the same method of constructing the decision with information gain or gini index approach, amongst other algorithms. If you are not aware of the concepts of decision tree classifier, Please check out my lecture here on Decision Tree CART for Machine learning. You will need to know how the decision tree classifier works before you can learn the working nature of the random forest algorithm. ------------------------------------------------------------ Support us on Patreon ►AugmentedStartups.info/Patreon Chat to us on Discord ►AugmentedStartups.info/discord Interact with us on Facebook ►AugmentedStartups.info/Facebook Check my latest work on Instagram ►AugmentedStartups.info/instagram Learn Advanced Tutorials on Udemy ►AugmentedStartups.info/udemy ------------------------------------------------------------ To learn more on Artificial Intelligence, Augmented Reality IoT, Deep Learning FPGAs, Arduinos, PCB Design and Image Processing then check out http://augmentedstartups.info/home Please Like and Subscribe for more videos :)
Views: 208124 Augmented Startups
Ensemble Learning, Bootstrap Aggregating (Bagging) and Boosting
 
06:32
#EnsembleLearning #EnsembleModels #MachineLearning #DataAnalytics #DataScience Ensemble Learning is using multiple learning algorithms at a time, to obtain predictions with an aim to have better predictions than the individual models. Ensemble learning is a very popular method to improve the accuracy of a machine learning model. It avoid overfitting and gives us a much better model. bootstrap aggregating (Bagging) and boosting are popular ensemble methods. In the next tutorial we will implement some ensemble models in scikit learn. For all Ipython notebooks, used in this series : https://github.com/shreyans29/thesemicolon Facebook : https://www.facebook.com/thesemicolon.code Support us on Patreon : https://www.patreon.com/thesemicolon
Views: 28500 The Semicolon
K Nearest Neighbor (kNN) Algorithm  | R Programming | Data Prediction Algorithm
 
16:37
In this video I've talked about how you can implement kNN or k Nearest Neighbor algorithm in R with the help of an example data set freely available on UCL machine learning repository.
Views: 39825 Data Science Tutorials
KNN Algorithm - How KNN Algorithm Works With Example | Data Science For Beginners | Simplilearn
 
27:43
This KNN Algorithm tutorial (K-Nearest Neighbor Classification Algorithm tutorial) will help you understand what is KNN, why do we need KNN, how do we choose the factor 'K', when do we use KNN, how does KNN algorithm work and you will also see a use case demo showing how to predict whether a person will have diabetes or not using KNN algorithm. KNN algorithm can be applied to both classification and regression problems. Apparently, within the Data Science industry, it's more widely used to solve classification problems. It’s a simple algorithm that stores all available cases and classifies any new cases by taking a majority vote of its k neighbors. Now lets deep dive into this video to understand what is KNN algorithm and how does it actually works. Below topics are explained in this K-Nearest Neighbor Classification Algorithm (KNN Algorithm) tutorial: 1. Why do we need KNN? 2. What is KNN? 3. How do we choose the factor 'K'? 4. When do we use KNN? 5. How does KNN algorithm work? 6. Use case - Predict whether a person will have diabetes or not To learn more about Machine Learning, subscribe to our YouTube channel: https://www.youtube.com/user/Simplilearn?sub_confirmation=1 You can also go through the slides here: https://goo.gl/XP6xcp Watch more videos on Machine Learning: https://www.youtube.com/watch?v=7JhjINPwfYQ&list=PLEiEAq2VkUULYYgj13YHUWmRePqiu8Ddy #MachineLearningAlgorithms #Datasciencecourse #datascience #SimplilearnMachineLearning #MachineLearningCourse Simplilearn’s Machine Learning course will make you an expert in Machine Learning, a form of Artificial Intelligence that automates data analysis to enable computers to learn and adapt through experience to do specific tasks without explicit programming. You will master Machine Learning concepts and techniques including supervised and unsupervised learning, mathematical and heuristic aspects, hands-on modeling to develop algorithms and prepare you for the role of Machine Learning Engineer Why learn Machine Learning? Machine Learning is rapidly being deployed in all kinds of industries, creating a huge demand for skilled professionals. The Machine Learning market size is expected to grow from USD 1.03 billion in 2016 to USD 8.81 billion by 2022, at a Compound Annual Growth Rate (CAGR) of 44.1% during the forecast period. You can gain in-depth knowledge of Machine Learning by taking our Machine Learning certification training course. With Simplilearn’s Machine Learning course, you will prepare for a career as a Machine Learning engineer as you master concepts and techniques including supervised and unsupervised learning, mathematical and heuristic aspects, and hands-on modeling to develop algorithms. Those who complete the course will be able to: 1. Master the concepts of supervised, unsupervised and reinforcement learning concepts and modeling. 2. Gain practical mastery over principles, algorithms, and applications of Machine Learning through a hands-on approach which includes working on 28 projects and one capstone project. 3. Acquire thorough knowledge of the mathematical and heuristic aspects of Machine Learning. 4. Understand the concepts and operation of support vector machines, kernel SVM, Naive Bayes, decision tree classifier, random forest classifier, logistic regression, K-nearest neighbors, K-means clustering and more. 5. Model a wide variety of robust Machine Learning algorithms including deep learning, clustering, and recommendation systems The Machine Learning Course is recommended for: 1. Developers aspiring to be a data scientist or Machine Learning engineer 2. Information architects who want to gain expertise in Machine Learning algorithms 3. Analytics professionals who want to work in Machine Learning or artificial intelligence 4. Graduates looking to build a career in data science and Machine Learning Learn more at: https://www.simplilearn.com/big-data-and-analytics/machine-learning-certification-training-course?utm_campaign=What-is-Machine-Learning-7JhjINPwfYQ&utm_medium=Tutorials&utm_source=youtube For more updates on courses and tips follow us on: - Facebook: https://www.facebook.com/Simplilearn - Twitter: https://twitter.com/simplilearn - LinkedIn: https://www.linkedin.com/company/simplilearn - Website: https://www.simplilearn.com Get the Android app: http://bit.ly/1WlVo4u Get the iOS app: http://apple.co/1HIO5J0
Views: 47436 Simplilearn
Random Forest Algorithm - Random Forest Explained | Random Forest in Machine Learning | Simplilearn
 
45:35
This Random Forest Algorithm tutorial will explain how Random Forest algorithm works in Machine Learning. By the end of this video, you will be able to understand what is Machine Learning, what is Classification problem, applications of Random Forest, why we need Random Forest, how it works with simple examples and how to implement Random Forest algorithm in Python. Below are the topics covered in this Machine Learning tutorial: 1. What is Machine Learning? 2. Applications of Random Forest 3. What is Classification? 4. Why Random Forest? 5. Random Forest and Decision Tree 6. Use case - Iris Flower Analysis Subscribe to our channel for more Machine Learning Tutorials: https://www.youtube.com/user/Simplilearn?sub_confirmation=1 You can also go through the Slides here: https://goo.gl/K8T4tW Machine Learning Articles: https://www.simplilearn.com/what-is-artificial-intelligence-and-why-ai-certification-article?utm_campaign=Random-Forest-Tutorial-eM4uJ6XGnSM&utm_medium=Tutorials&utm_source=youtube To gain in-depth knowledge of Machine Learning, check our Machine Learning certification training course: https://www.simplilearn.com/big-data-and-analytics/machine-learning-certification-training-course?utm_campaign=Random-Forest-Tutorial-eM4uJ6XGnSM&utm_medium=Tutorials&utm_source=youtube #MachineLearningAlgorithms #Datasciencecourse #DataScience #SimplilearnMachineLearning #MachineLearningCourse - - - - - - - - About Simplilearn Machine Learning course: A form of artificial intelligence, Machine Learning is revolutionizing the world of computing as well as all people’s digital interactions. Machine Learning powers such innovative automated technologies as recommendation engines, facial recognition, fraud protection and even self-driving cars.This Machine Learning course prepares engineers, data scientists and other professionals with knowledge and hands-on skills required for certification and job competency in Machine Learning. - - - - - - - Why learn Machine Learning? Machine Learning is taking over the world- and with that, there is a growing need among companies for professionals to know the ins and outs of Machine Learning The Machine Learning market size is expected to grow from USD 1.03 Billion in 2016 to USD 8.81 Billion by 2022, at a Compound Annual Growth Rate (CAGR) of 44.1% during the forecast period. - - - - - - What skills will you learn from this Machine Learning course? By the end of this Machine Learning course, you will be able to: 1. Master the concepts of supervised, unsupervised and reinforcement learning concepts and modeling. 2. Gain practical mastery over principles, algorithms, and applications of Machine Learning through a hands-on approach which includes working on 28 projects and one capstone project. 3. Acquire thorough knowledge of the mathematical and heuristic aspects of Machine Learning. 4. Understand the concepts and operation of support vector machines, kernel SVM, naive Bayes, decision tree classifier, random forest classifier, logistic regression, K-nearest neighbors, K-means clustering and more. 5. Be able to model a wide variety of robust Machine Learning algorithms including deep learning, clustering, and recommendation systems - - - - - - - Who should take this Machine Learning Training Course? We recommend this Machine Learning training course for the following professionals in particular: 1. Developers aspiring to be a data scientist or Machine Learning engineer 2. Information architects who want to gain expertise in Machine Learning algorithms 3. Analytics professionals who want to work in Machine Learning or artificial intelligence 4. Graduates looking to build a career in data science and Machine Learning - - - - - - For more updates on courses and tips follow us on: - Facebook: https://www.facebook.com/Simplilearn - Twitter: https://twitter.com/simplilearn - LinkedIn: https://www.linkedin.com/company/simplilearn - Website: https://www.simplilearn.com Get the Android app: http://bit.ly/1WlVo4u Get the iOS app: http://apple.co/1HIO5J0
Views: 52405 Simplilearn
KNN Classification– Solved Numerical Question in Hindi(Numerical 1)
 
07:47
KNN Classification– Solved Numerical Question in Hindi(Numerical 1) K-Nearest Neighbour Classification Solved Numerical Problem Data Warehouse and Data Mining Lectures in Hindi
weka j48 classification tutorial
 
12:47
This is a tutorial for the Innovation and technology course in the ePC-UCB. La Paz Bolivia
Views: 54235 Alejandro Peña
Decision Tree Classification Algorithm – Solved Numerical Question 1 in Hindi
 
23:15
Decision Tree Classification Algorithm – Solved Numerical Question 1 in Hindi Data Warehouse and Data Mining Lectures in Hindi
Naive Bayes Classification with R | Example with Steps
 
14:55
Provides steps for applying Naive Bayes Classification with R. Data: https://goo.gl/nCFX1x R file: https://goo.gl/Feo5mT Machine Learning videos: https://goo.gl/WHHqWP Naive Bayes Classification is an important tool related to analyzing big data or working in data science field. R is a free software environment for statistical computing and graphics, and is widely used by both academia and industry. R software works on both Windows and Mac-OS. It was ranked no. 1 in a KDnuggets poll on top languages for analytics, data mining, and data science. RStudio is a user friendly environment for R that has become popular.
Views: 19986 Bharatendra Rai
K Nearest Neighbors Application - Practical Machine Learning Tutorial with Python p.14
 
21:41
In the last part we introduced Classification, which is a supervised form of machine learning, and explained the K Nearest Neighbors algorithm intuition. In this tutorial, we're actually going to apply a simple example of the algorithm using Scikit-Learn, and then in the subsquent tutorials we'll build our own algorithm to learn more about how it works under the hood. To exemplify classification, we're going to use a Breast Cancer Dataset, which is a dataset donated to the University of California, Irvine (UCI) collection from the University of Wisconsin-Madison. UCI has a large Machine Learning Repository. https://pythonprogramming.net https://twitter.com/sentdex https://www.facebook.com/pythonprogramming.net/ https://plus.google.com/+sentdex
Views: 114029 sentdex
Decision Tree (CART) - Machine Learning Fun and Easy
 
08:46
Decision Tree (CART) - Machine Learning Fun and Easy ►FREE YOLO GIFT - http://augmentedstartups.info/yolofreegiftsp ►KERAS Course - https://www.udemy.com/machine-learning-fun-and-easy-using-python-and-keras/?couponCode=YOUTUBE_ML Decision tree is a type of supervised learning algorithm (having a pre-defined target variable) that is mostly used in classification problems. A tree has many analogies in real life, and turns out that it has influenced a wide area of machine learning, covering both classification and regression (CART). So a decision tree is a flow-chart-like structure, where each internal node denotes a test on an attribute, each branch represents the outcome of a test, and each leaf (or terminal) node holds a class label. The topmost node in a tree is the root node. ------------------------------------------------------------ Support us on Patreon ►AugmentedStartups.info/Patreon Chat to us on Discord ►AugmentedStartups.info/discord Interact with us on Facebook ►AugmentedStartups.info/Facebook Check my latest work on Instagram ►AugmentedStartups.info/instagram Learn Advanced Tutorials on Udemy ►AugmentedStartups.info/udemy ------------------------------------------------------------ To learn more on Artificial Intelligence, Augmented Reality IoT, Deep Learning FPGAs, Arduinos, PCB Design and Image Processing then check out http://augmentedstartups.info/home Please Like and Subscribe for more videos :)
Views: 136478 Augmented Startups
Support Vector Machine (SVM) - Fun and Easy Machine Learning
 
07:28
Support Vector Machine (SVM) - Fun and Easy Machine Learning ►FREE YOLO GIFT - http://augmentedstartups.info/yolofreegiftsp ►KERAS COURSE - https://www.udemy.com/machine-learning-fun-and-easy-using-python-and-keras/?couponCode=YOUTUBE_ML ►MACHINE LEARNING COURSES -http://augmentedstartups.info/machine-learning-courses ------------------------------------------------------------------------ A Support Vector Machine (SVM) is a discriminative classifier formally defined by a separating hyperplane. In other words, given labeled training data (supervised learning), the algorithm outputs an optimal hyperplane which categorizes new examples. To understand SVM’s a bit better, Lets first take a look at why they are called support vector machines. So say we got some sample data over here of features that classify whether a observed picture is a dog or a cat, so we can for example look at snout length or and ear geometry if we assume that dogs generally have longer snouts and cat have much more pointy ear shapes. So how do we decide where to draw our decision boundary? Well we can draw it over here or here or like this. Any of these would be fine, but what would be the best? If we do not have the optimal decision boundary we could incorrectly mis-classify a dog with a cat. So if we draw an arbitrary separation line and we use intuition to draw it somewhere between this data point for the dog class and this data point of the cat class. These points are known as support Vectors – Which are defined as data points that the margin pushes up against or points that are closest to the opposing class. So the algorithm basically implies that only support vector are important whereas other training examples are ‘ignorable’. An example of this is so that if you have our case of a dog that looks like a cat or cat that is groomed like a dog, we want our classifier to look at these extremes and set our margins based on these support vectors. ------------------------------------------------------------ Support us on Patreon ►AugmentedStartups.info/Patreon Chat to us on Discord ►AugmentedStartups.info/discord Interact with us on Facebook ►AugmentedStartups.info/Facebook Check my latest work on Instagram ►AugmentedStartups.info/instagram Learn Advanced Tutorials on Udemy ►AugmentedStartups.info/udemy ------------------------------------------------------------ To learn more on Artificial Intelligence, Augmented Reality IoT, Deep Learning FPGAs, Arduinos, PCB Design and Image Processing then check out http://augmentedstartups.info/home Please Like and Subscribe for more videos :)
Views: 175126 Augmented Startups
Intelligent Heart Disease Prediction System Using Data Mining Techniques
 
08:48
We are providing a Final year IEEE project solution & Implementation with in short time. If anyone need a Details Please Contact us Mail: [email protected] or [email protected] Phone: 09842339884, 09688177392 Watch this also: https://www.youtube.com/channel/UCDv0caOoT8VJjnrb4WC22aw ieee projects, ieee java projects , ieee dotnet projects, ieee android projects, ieee matlab projects, ieee embedded projects,ieee robotics projects,ieee ece projects, ieee power electronics projects, ieee mtech projects, ieee btech projects, ieee be projects,ieee cse projects, ieee eee projects,ieee it projects, ieee mech projects ,ieee e&I projects, ieee IC projects, ieee VLSI projects, ieee front end projects, ieee back end projects , ieee cloud computing projects, ieee system and circuits projects, ieee data mining projects, ieee image processing projects, ieee matlab projects, ieee simulink projects, matlab projects, vlsi project, PHD projects,ieee latest MTECH title list,ieee eee title list,ieee download papers,ieee latest idea,ieee papers,ieee recent papers,ieee latest BE projects,ieee B tech projects| Engineering Project Consultants bangalore, Engineering projects jobs Bangalore, Academic Project Guidance for Electronics, Free Synopsis, Latest project synopsiss ,recent ieee projects ,recent engineering projects ,innovative projects| Computer Software Project Management Consultants, Project Consultants For Electrical, Project Report Science, Project Consultants For Computer, ME Project Education Consultants, Computer Programming Consultants, Project Consultants For Bsc, Computer Consultants, Mechanical Consultants, BCA live projects institutes in Bangalore, B.Tech live projects institutes in Bangalore,MCA Live Final Year Projects Institutes in Bangalore,M.Tech Final Year Projects Institutes in Bangalore,B.E Final Year Projects Institutes in Bangalore , M.E Final Year Projects Institutes in Bangalore,Live Projects,Academic Projects, IEEE Projects, Final year Diploma, B.E, M.Tech,M.S BCA, MCA Do it yourself projects, project assistance with project report and PPT, Real time projects, Academic project guidance Bengaluru| Image Processing ieee projects with source code,VLSI projects source code,ieee online projects.best projects center in Chennai, best projects center in trichy, best projects center in bangalore,ieee abstract, project source code, documentation ,ppt ,UML Diagrams,Online Demo and Training Sessions|Data mining, IHDPS, Decision Tree, Neural Network, Naive Bayes
Support Vector Machine Tutorial Using R | SVM Algorithm Explained | Data Science Training | Edureka
 
30:15
** Data Science Certification using R: https://www.edureka.co/data-science ** This session is dedicated to how SVM works, the various features of SVM and how it used in the real world. The following topics will be covered today: (01:15) Introduction to machine learning ((04:15) What is Support Vector Machine (SVM)? (06:19) How does SVM work? (09:35) Non-linear SVM (11:20) SVM Use case (12:43) Hands-On Blog Series: http://bit.ly/data-science-blogs Data Science Training Playlist: http://bit.ly/data-science-playlist - - - - - - - - - - - - - - - - - Subscribe to our channel to get video updates. Hit the subscribe button above: https://goo.gl/6ohpTV Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka - - - - - - - - - - - - - - - - - #svmalgorithm #svmwithr #svmclassifier #datascience #datasciencetutorial #datasciencewithr #datasciencecourse #datascienceforbeginners #datasciencetraining #datasciencetutorial - - - - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data lifecycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modeling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyze Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyze data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies. For online Data Science training, please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll-free) for more information.
Views: 4511 edureka!
Decision Tree Classification in R
 
19:21
This video covers how you can can use rpart library in R to build decision trees for classification. The video provides a brief overview of decision tree and the shows a demo of using rpart to create decision tree models, visualise it and predict using the decision tree model
Views: 76036 Melvin L
Logistic Regression in R | Machine Learning Algorithms | Data Science Training | Edureka
 
01:09:12
( Data Science Training - https://www.edureka.co/data-science ) This Logistic Regression Tutorial shall give you a clear understanding as to how a Logistic Regression machine learning algorithm works in R. Towards the end, in our demo we will be predicting which patients have diabetes using Logistic Regression! In this Logistic Regression Tutorial video you will understand: 1) The 5 Questions asked in Data Science 2) What is Regression? 3) Logistic Regression - What and Why? 4) How does Logistic Regression Work? 5) Demo in R: Diabetes Use Case 6) Logistic Regression: Use Cases Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Data Science playlist here: https://goo.gl/60NJJS #LogisticRegression #Datasciencetutorial #Datasciencecourse #datascience How it Works? 1. There will be 30 hours of instructor-led interactive online classes, 40 hours of assignments and 20 hours of project 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. You will get Lifetime Access to the recordings in the LMS. 4. At the end of the training you will have to complete the project based on which we will provide you a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyse Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyse data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Reviews: Gnana Sekhar Vangara, Technology Lead at WellsFargo.com, says, "Edureka Data science course provided me a very good mixture of theoretical and practical training. The training course helped me in all areas that I was previously unclear about, especially concepts like Machine learning and Mahout. The training was very informative and practical. LMS pre recorded sessions and assignmemts were very good as there is a lot of information in them that will help me in my job. The trainer was able to explain difficult to understand subjects in simple terms. Edureka is my teaching GURU now...Thanks EDUREKA and all the best. "
Views: 85466 edureka!
Decision Tree Learning using ID3 Algorithm | Artificial intelligence | Machine Learning
 
16:24
#askfaizan | #syedfaizanahmad | #decisiontree PlayList : Artificial Intelligence : https://www.youtube.com/playlist?list=PLhwpdymnbXz4fEjqBoJbvLTIqfZJfXjbH Bayesian Network in Artificial Intelligence | Bayesian Belief Network | https://youtu.be/0U5xH4b7nPc Decision Tree Learning using ID3 Algorithm | Artificial intelligence https://youtu.be/pvTejBgiF3I Supervised Learning and Unsupervised Learning | Learning in Artificial Intelligence https://youtu.be/Wn2JgBfAsSM Genetic Algorithm | Artificial Intelligence Tutorial in Hindi Urdu https://youtu.be/frB2zIpOOBk Comparison of Search Algorithm https://youtu.be/QMz7jwXDvwg Resolution in Artificial Intelligence | Resolution Rules in AI https://youtu.be/oQmqJPLqHZA Inference rules in Predicate logic https://youtu.be/Y8KCh4VRRwM Predicate logic in AI | First order logic in Artificial Intelligence https://youtu.be/sFINpc5KA3E Wumpus World Proving | Propositional logic Example https://youtu.be/bDu9iNJ8h58 PROPOSITIONAL LOGIC | Artificial Intelligence https://youtu.be/oUR11UUIDvA Knowledge based Agents | Logical agents https://youtu.be/Y7CS-1BfA6o Alpha Beta Pruning | Problem #2 https://youtu.be/QL-g1FDls74 A Decision tree represents a function that takes as input a vector of attribute values and returns a “decision”—a single output value. The input and output values can be discrete or continuous. A decision tree reaches its decision by performing a sequence of tests. There are many specific decision-tree algorithms. Notable ones include: ID3 (Iterative Dichotomiser 3) C4.5 (successor of ID3) CART (Classification And Regression Tree) CHAID (Chi-squared Automatic Interaction Detector). Performs multi-level splits when computing classification trees. MARS: extends decision trees to handle numerical data better. ID3 is one of the most common decision tree algorithm Dichotomisation means dividing into two completely opposite things. Algorithm iteratively divides attributes into two groups which are the most dominant attribute and others to construct a tree. Then, it calculates the Entropy and Information Gains of each attribute. In this way, the most dominant attribute can be founded. After then, the most dominant one is put on the tree as decision node. Entropy and Gain scores would be calculated again among the other attributes. Procedure continues until reaching a decision for that branch. algorithm steps: Calculate the entropy of every attribute using the data set S Entropy(S) = ∑ – p(I) . log2p(I) Split the set S into subsets using the attribute for which the resulting entropy (after splitting) is minimum (or, equivalently, information gain is maximum) Gain(S, A) = Entropy(S) – ∑ [ p(S|A) . Entropy(S|A) ] Make a decision tree node containing that attribute Recurse on subsets using remaining attributes. for Complete Artificial Intelligence Videos click on the link : https://www.youtube.com/playlist?list=PLhwpdymnbXz4fEjqBoJbvLTIqfZJfXjbH Thank you for watching share with your friends Follow on : Facebook page : https://www.facebook.com/askfaizan1/ Instagram page : https://www.instagram.com/ask_faizan/ Twitter : https://twitter.com/ask_faizan/
Views: 32646 Ask Faizan
Naive Bayes Algorithm | Naive Bayes Classifier With Example in Hindi (Part 1)
 
07:52
simple and easy explanation of Naive Bayes Algorithm in Hindi
Views: 15018 Red Apple Tutorials
data mining fp growth | data mining fp growth algorithm | data mining fp tree example | fp growth
 
14:17
In this video FP growth algorithm is explained in easy way in data mining Thank you for watching share with your friends Follow on : Facebook : https://www.facebook.com/wellacademy/ Instagram : https://instagram.com/well_academy Twitter : https://twitter.com/well_academy data mining algorithms in hindi, data mining in hindi, data mining lecture, data mining tools, data mining tutorial, data mining fp tree example, fp growth tree data mining, fp tree algorithm in data mining, fp tree algorithm in data mining example, fp tree in data mining, data mining fp growth, data mining fp growth algorithm, data mining fp tree example, data mining fp tree example, fp growth tree data mining, fp tree algorithm in data mining, fp tree algorithm in data mining example, fp tree in data mining, data mining, fp growth algorithm, fp growth algorithm example, fp growth algorithm in data mining, fp growth algorithm in data mining example, fp growth algorithm in data mining examples ppt, fp growth algorithm in data mining in hindi, fp growth algorithm in r, fp growth english, fp growth example, fp growth example in data mining, fp growth frequent itemset, fp growth in data mining, fp growth step by step, fp growth tree
Views: 133975 Well Academy
K - Nearest Neighbors - KNN Fun and Easy Machine Learning
 
05:53
K - Nearest Neighbors - KNN Fun and Easy Machine Learning ►FREE YOLO GIFT - http://augmentedstartups.info/yolofreegiftsp ►KERAS Course - https://www.udemy.com/machine-learning-fun-and-easy-using-python-and-keras/?couponCode=YOUTUBE_ML In pattern recognition, the KNN algorithm is a method for classifying objects based on closest training examples in the feature space. KNN is a type of instance-based learning, or lazy learning where the function is only approximated locally and all computation is delayed until classification. The KNN is the fundamental and simplest classification technique when there is little or no prior knowledge about the distribution of the data. The K in KNN refers to number of nearest neighbors that the classifier will use to make its predication. In this video we use Game of Thrones example to explain kNN. ------------------------------------------------------------ Support us on Patreon ►AugmentedStartups.info/Patreon Chat to us on Discord ►AugmentedStartups.info/discord Interact with us on Facebook ►AugmentedStartups.info/Facebook Check my latest work on Instagram ►AugmentedStartups.info/instagram Learn Advanced Tutorials on Udemy ►AugmentedStartups.info/udemy ------------------------------------------------------------ To learn more on Artificial Intelligence, Augmented Reality IoT, Deep Learning FPGAs, Arduinos, PCB Design and Image Processing then check out http://augmentedstartups.info/home Please Like and Subscribe for more videos :)
Views: 43295 Augmented Startups
Support Vector Machine (SVM) with R - Classification and Prediction Example
 
16:57
Includes an example with, - brief definition of what is svm? - svm classification model - svm classification plot - interpretation - tuning or hyperparameter optimization - best model selection - confusion matrix - misclassification rate Machine Learning videos: https://goo.gl/WHHqWP svm is an important machine learning tool related to analyzing big data or working in data science field. R is a free software environment for statistical computing and graphics, and is widely used by both academia and industry. R software works on both Windows and Mac-OS. It was ranked no. 1 in a KDnuggets poll on top languages for analytics, data mining, and data science. RStudio is a user friendly environment for R that has become popular.
Views: 38095 Bharatendra Rai
How SVM (Support Vector Machine) algorithm works
 
07:33
In this video I explain how SVM (Support Vector Machine) algorithm works to classify a linearly separable binary data set. The original presentation is available at http://prezi.com/jdtqiauncqww/?utm_campaign=share&utm_medium=copy&rc=ex0share
Views: 524511 Thales Sehn Körting
C4.5 Decision Tree implementation in hadoop (IIT G)
 
02:16
This is a demo of Implementation of C4.5 Algorithm using Hadoop MapReduce frame work. C4.5 is a commonly used in decision tree algorithm in data mining for classification. The existing C4.5 algorithm implementation is running in serial way. We are implementing this algorithm using Hadoop MapReduce framework which can run parallel in multiple system. In this project we are comparing our result with Weka's result where C4.5 is serially implemented with different data source of different size. http://btechfreakz.blogspot.in/2013/04/implementation-of-c45-algorithm-using.html
Views: 10316 prayag surendran
Support Vector Machine in R | SVM Algorithm Example | Data Science With R Tutorial | Simplilearn
 
21:03
This Support Vector Machine in R tutorial video will help you understand what is Machine Learning, what is classification, what is Support Vector Machine (SVM), what is SVM kernel and you will also see a use case in which we will classify horses and mules from a given data set using SVM algorithm. SVM is a method of classification in which you plot raw data as points in an n-dimensional space (where n is the number of features you have). The value of each feature is then tied to a particular coordinate, making it easy to classify the data. Lines called classifiers can be used to split the data and plot them on a graph. SVM is a classification algorithm used to assign data to various classes. They involve detecting hyperplanes which segregate data into classes. SVMs are very versatile and are also capable of performing linear or nonlinear classification, regression, and outlier detection. Now, let us get started and understand Support Vector Machine in detail. Below topics are explained in this "Support Vector Machine in R" video: 1. What is machine learning? 2. What is classification? 3. What is support vector machine? 4. Understanding support vector machine 5. Understanding SVM kernel 6. Use case: classifying horses and mules To learn more about Data Science, subscribe to our YouTube channel: https://www.youtube.com/user/Simplilearn?sub_confirmation=1 You can also go through the Slides here: https://goo.gl/w72XBR Watch more videos on Data Science: https://www.youtube.com/watch?v=0gf5iLTbiQM&list=PLEiEAq2VkUUIEQ7ENKU5Gv0HpRDtOphC6 #DataScienceWithR #DataScienceCourse #DataScience #DataScientist #BusinessAnalytics #MachineLearning Become an expert in data analytics using the R programming language in this data science certification training course. You’ll master data exploration, data visualization, predictive analytics and descriptive analytics techniques with the R language. With this data science course, you’ll get hands-on practice on R CloudLab by implementing various real-life, industry-based projects in the domains of healthcare, retail, insurance, finance, airlines, music industry, and unemployment. Why learn Data Science with R? 1. This course forms an ideal package for aspiring data analysts aspiring to build a successful career in analytics/data science. By the end of this training, participants will acquire a 360-degree overview of business analytics and R by mastering concepts like data exploration, data visualization, predictive analytics, etc 2. According to marketsandmarkets.com, the advanced analytics market will be worth $29.53 Billion by 2019 3. Wired.com points to a report by Glassdoor that the average salary of a data scientist is $118,709 4. Randstad reports that pay hikes in the analytics industry are 50% higher than IT The Data Science Certification with R has been designed to give you in-depth knowledge of the various data analytics techniques that can be performed using R. The data science course is packed with real-life projects and case studies, and includes R CloudLab for practice. 1. Mastering R language: The data science course provides an in-depth understanding of the R language, R-studio, and R packages. You will learn the various types of apply functions including DPYR, gain an understanding of data structure in R, and perform data visualizations using the various graphics available in R. 2. Mastering advanced statistical concepts: The data science training course also includes various statistical concepts such as linear and logistic regression, cluster analysis and forecasting. You will also learn hypothesis testing. 3. As a part of the data science with R training course, you will be required to execute real-life projects using CloudLab. The compulsory projects are spread over four case studies in the domains of healthcare, retail, and the Internet. Four additional projects are also available for further practice. The Data Science with R is recommended for: 1. IT professionals looking for a career switch into data science and analytics 2. Software developers looking for a career switch into data science and analytics 3. Professionals working in data and business analytics 4. Graduates looking to build a career in analytics and data science 5. Anyone with a genuine interest in the data science field 6. Experienced professionals who would like to harness data science in their fields Learn more at: https://www.simplilearn.com/big-data-and-analytics/data-scientist-certification-sas-r-excel-training?utm_campaign=Support-Vector-Machine-in-R-QkAmOb1AMrY&utm_medium=Tutorials&utm_source=youtube For more information about Simplilearn courses, visit: - Facebook: https://www.facebook.com/Simplilearn - Twitter: https://twitter.com/simplilearn - LinkedIn: https://www.linkedin.com/company/simplilearn/ - Website: https://www.simplilearn.com Get the Android app: http://bit.ly/1WlVo4u Get the iOS app: http://apple.co/1HIO5J0
Views: 6948 Simplilearn
Matlab Implementation of Disease Prediction System Using Neural Network +91-8146105825 call me
 
07:20
In this tutorial of “Matlab implementation of disease prediction using data mining techniques.” I have shown that how a disease can be predicted by an artificial intelligence system. To make the system able to predict disease we first create the database with all accurate report from the ratio of the level of the different substance in the body by which any disease spread in the whole body. When we give input data to the system then find how much ratio is in that individual body and for which disease it matches. Then the system predicts that which disease you have and if no match found with the database then it shows you do not have any disease. If you have any query, please contact us at 8146105825 or mail us at http://www.researchinfinitesolutions.com/contact-us
Views: 4971 Fly High with AI