Home
Search results “Visual data mining and machine learning pdf”
SAS Visual Data Mining and Machine Learning
 
08:40
http://www.sas.com/vdmml Boost analytical productivity and solve your most complex problems faster with a single, integrated in-memory environment that's both open and scalable. SAS VISUAL DATA MINING AND MACHINE LEARNING SAS Visual Data Mining and Machine Learning supports the end-to-end data mining and machine-learning process with a comprehensive, visual (and programming) interface that handles all tasks in the analytical life cycle. It suits a variety of users and there is no application switching. From data management to model development and deployment, everyone works in the same, integrated environment. http://www.sas.com/vdmml SUBSCRIBE TO THE SAS SOFTWARE YOUTUBE CHANNEL http://www.youtube.com/subscription_center?add_user=sassoftware ABOUT SAS SAS is the leader in analytics. Through innovative analytics, business intelligence and data management software and services, SAS helps customers at more than 75,000 sites make better decisions faster. Since 1976, SAS has been giving customers around the world THE POWER TO KNOW®. VISIT SAS http://www.sas.com CONNECT WITH SAS SAS ► http://www.sas.com SAS Customer Support ► http://support.sas.com SAS Communities ► http://communities.sas.com Facebook ► https://www.facebook.com/SASsoftware Twitter ► https://www.twitter.com/SASsoftware LinkedIn ► http://www.linkedin.com/company/sas Google+ ► https://plus.google.com/+sassoftware Blogs ► http://blogs.sas.com RSS ►http://www.sas.com/rss
Views: 5470 SAS Software
Mathematics of Machine Learning
 
09:53
Do you need to know math to do machine learning? Yes! The big 4 math disciplines that make up machine learning are linear algebra, probability theory, calculus, and statistics. I'm going to cover how each are used by going through a linear regression problem that predicts the price of an apartment in NYC based on its price per square foot. Then we'll switch over to a logistic regression model to change it up a bit. This will be a hands-on way to see how each of these disciplines are used in the field. Code for this video (with coding challenge): https://github.com/llSourcell/math_of_machine_learning Please Subscribe! And like. And comment. That's what keeps me going. Want more education? Connect with me here: Twitter: https://twitter.com/sirajraval Facebook: https://www.facebook.com/sirajology instagram: https://www.instagram.com/sirajraval Sign up for the next course at The School of AI: http://theschool.ai/ More learning resources: https://towardsdatascience.com/the-mathematics-of-machine-learning-894f046c568 https://ocw.mit.edu/courses/mathematics/18-657-mathematics-of-machine-learning-fall-2015/ https://www.quora.com/How-do-I-learn-mathematics-for-machine-learning https://courses.washington.edu/css490/2012.Winter/lecture_slides/02_math_essentials.pdf Join us in the Wizards Slack channel: http://wizards.herokuapp.com/ And please support me on Patreon: https://www.patreon.com/user?u=3191693 Signup for my newsletter for exciting updates in the field of AI: https://goo.gl/FZzJ5w Hit the Join button above to sign up to become a member of my channel for access to exclusive content!
Views: 250599 Siraj Raval
Support Vector Machines - The Math of Intelligence (Week 1)
 
29:55
Support Vector Machines are a very popular type of machine learning model used for classification when you have a small dataset. We'll go through when to use them, how they work, and build our own using numpy. This is part of Week 1 of The Math of Intelligence. This is a re-recorded version of a video I just released a day ago (the audio/video quality is better in this one) Code for this video: https://github.com/llSourcell/Classifying_Data_Using_a_Support_Vector_Machine Please Subscribe! And like. And comment. that's what keeps me going. Course Syllabus: https://github.com/llSourcell/The_Math_of_Intelligence Join us in the Wizards Slack channel: http://wizards.herokuapp.com/ More Learning resources: https://www.analyticsvidhya.com/blog/2015/10/understaing-support-vector-machine-example-code/ http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf http://machinelearningmastery.com/support-vector-machines-for-machine-learning/ http://www.cs.columbia.edu/~kathy/cs4701/documents/jason_svm_tutorial.pdf http://www.statsoft.com/Textbook/Support-Vector-Machines https://www.youtube.com/watch?v=_PwhiWxHK8o And please support me on Patreon: https://www.patreon.com/user?u=3191693 Follow me: Twitter: https://twitter.com/sirajraval Facebook: https://www.facebook.com/sirajology Instagram: https://www.instagram.com/sirajraval/ Instagram: https://www.instagram.com/sirajraval/ Signup for my newsletter for exciting updates in the field of AI: https://goo.gl/FZzJ5w Hit the Join button above to sign up to become a member of my channel for access to exclusive content!
Views: 156891 Siraj Raval
Exploratory Data Analysis
 
19:54
An introduction to exploratory data analysis that includes discussion of descriptive statistics, graphs, outliers, and robust statistics.
Views: 33471 Prof. Patrick Meyer
An Introduction to GPU Programming with CUDA
 
10:00
If you can parallelize your code by harnessing the power of the GPU, I bow to you. GPU code is usually abstracted away by by the popular deep learning frameworks, but knowing how it works is really useful. CUDA is the most popular of the GPU frameworks so we're going to add two arrays together, then optimize that process using it. I love CUDA! Code for this video: https://github.com/llSourcell/An_Introduction_to_GPU_Programming Alberto's Winning Code: https://github.com/alberduris/SirajsCodingChallenges/tree/master/Stock%20Market%20Prediction Hutauf's runner-up code: https://github.com/hutauf/Stock_Market_Prediction Please Subscribe! And like. And comment. That's what keeps me going. Follow me: Twitter: https://twitter.com/sirajraval Facebook: https://www.facebook.com/sirajology More learning resources: http://supercomputingblog.com/cuda-tutorials/ http://www.nvidia.com/docs/IO/116711/sc11-cuda-c-basics.pdf https://devblogs.nvidia.com/parallelforall/even-easier-introduction-cuda/ https://developer.nvidia.com/cuda-education-training https://llpanorama.wordpress.com/cuda-tutorial/ https://www.udacity.com/course/intro-to-parallel-programming--cs344 http://lorenabarba.com/gpuatbu/Program_files/Cruz_gpuComputing09.pdf http://cuda-programming.blogspot.nl/p/tutorial.html https://www.cc.gatech.edu/~vetter/keeneland/tutorial-2011-04-14/02-cuda-overview.pdf Join us in the Wizards Slack channel: http://wizards.herokuapp.com/ No, Nvidia did not pay me to make this video lol. I just love CUDA. And please support me on Patreon: https://www.patreon.com/user?u=3191693 Follow me: Twitter: https://twitter.com/sirajraval Facebook: https://www.facebook.com/sirajology Instagram: https://www.instagram.com/sirajraval/ Signup for my newsletter for exciting updates in the field of AI: https://goo.gl/FZzJ5w Hit the Join button above to sign up to become a member of my channel for access to exclusive content!
Views: 198677 Siraj Raval
Sentiment Analysis Using Machine Learning | Python | Sklearn | Beginner Tutorial
 
22:58
Source Code: https://goo.gl/Q3Gt5m References: https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/ http://www.inf.ed.ac.uk/teaching/courses/inf2b/learnnotes/inf2b-learn-note07-2up.pdf https://data.world/datasets/twitter In this video I explain how you can use machine learning algorithms on text data, using the example of twitter sentiment analysis. I have got the dataset of trump related tweets. It is there in the above mentioned website. This code looks though all the data and then figures out if a tweet is a positive tweet or a negative tweet. After the classification(positive sentiment/negative sentiment) it saves the data in a file. Code work offers you a variety of educational videos to enhance your programming skills. At times I create videos without prior preparations so that I can show you the mistakes I am making so that you don't repeat those mistakes yourself. It's humanly to make errors, so if you find some errors in my videos please leave a comment below and I will address them or you can email me at [email protected] stating the problem. I shall try to address all of you . Finally please hit hike . . . and do subscribe so that you get to know at once when some video is being released. Happy coding . .. Epic pen: http://epic-pen.com Screen Recorder: https://obsproject.com/ Facebook https://www.facebook.com/Coding-algorithms-datastructure-Codeworks-1520910904866937/ google plus https://plus.google.com/118085047343771284166 My Website: http://www.the-tinker-project.co.in/blog/
Views: 5551 code works
Artificial Neural Network Tutorial | Deep Learning With Neural Networks | Edureka
 
36:40
( TensorFlow Training - https://www.edureka.co/ai-deep-learning-with-tensorflow ) This Edureka "Neural Network Tutorial" video (Blog: https://goo.gl/4zxMfU) will help you to understand the basics of Neural Networks and how to use it for deep learning. It explains Single layer and Multi layer Perceptron in detail. Below are the topics covered in this tutorial: 1. Why Neural Networks? 2. Motivation Behind Neural Networks 3. What is Neural Network? 4. Single Layer Percpetron 5. Multi Layer Perceptron 6. Use-Case 7. Applications of Neural Networks Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Deep Learning With TensorFlow playlist here: https://goo.gl/cck4hE - - - - - - - - - - - - - - How it Works? 1. This is 21 hrs of Online Live Instructor-led course. Weekend class: 7 sessions of 3 hours each. 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. At the end of the training you will have to undergo a 2-hour LIVE Practical Exam based on which we will provide you a Grade and a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Deep learning with Tensorflow course will help you to learn the basic concepts of TensorFlow, the main functions, operations and the execution pipeline. Starting with a simple “Hello Word” example, throughout the course you will be able to see how TensorFlow can be used in curve fitting, regression, classification and minimization of error functions. This concept is then explored in the Deep Learning world. You will evaluate the common, and not so common, deep neural networks and see how these can be exploited in the real world with complex raw data using TensorFlow. In addition, you will learn how to apply TensorFlow for backpropagation to tune the weights and biases while the Neural Networks are being trained. Finally, the course covers different types of Deep Architectures, such as Convolutional Networks, Recurrent Networks and Autoencoders. Delve into neural networks, implement Deep Learning algorithms, and explore layers of data abstraction with the help of this Deep Learning with TensorFlow course. - - - - - - - - - - - - - - Who should go for this course? The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. Business Analysts who want to understand Deep Learning (ML) Techniques 4. Information Architects who want to gain expertise in Predictive Analytics 5. Professionals who want to captivate and analyze Big Data 6. Analysts wanting to understand Data Science methodologies However, Deep learning is not just focused to one particular industry or skill set, it can be used by anyone to enhance their portfolio. - - - - - - - - - - - - - - Why Learn Deep Learning With TensorFlow? TensorFlow is one of the best libraries to implement Deep Learning. TensorFlow is a software library for numerical computation of mathematical expressions, using data flow graphs. Nodes in the graph represent mathematical operations, while the edges represent the multidimensional data arrays (tensors) that flow between them. It was created by Google and tailored for Machine Learning. In fact, it is being widely used to develop solutions with Deep Learning. Machine learning is one of the fastest-growing and most exciting fields out there, and Deep Learning represents its true bleeding edge. Deep learning is primarily a study of multi-layered neural networks, spanning over a vast range of model architectures. Traditional neural networks relied on shallow nets, composed of one input, one hidden layer and one output layer. Deep-learning networks are distinguished from these ordinary neural networks having more hidden layers, or so-called more depth. These kinds of nets are capable of discovering hidden structures within unlabeled and unstructured data (i.e. images, sound, and text), which constitutes the vast majority of data in the world. For more information, please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll-free). Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka
Views: 73897 edureka!
Agglomerative clustering dendrogram example data mining
 
07:23
BOOK NAME : techmax publications datawarehousing and mining by arti deshpande n pallavi halarnkar $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ ALL DATA MINING ALGORITHM VIDEOS ARE BELOW : https://www.youtube.com/watch?v=JZepOmvB514&list=PLNmFIlsXKJMmekmO4Gh6ZBZUVZp24ltEr $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ PDF OF THE SUM IS BELOW : http://britsol.blogspot.in/2017/11/agglomerative-clustering-dendrogram.html?m=1 $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ EXAMPLES ARE AT BELOW LINK http://britsol.blogspot.in/2017/08/apriori-algorithm-example.html $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ DECISION TREE BASIC EXAMPLE PDF AND VIDEO ARE BELOW : VIDEO : https://www.youtube.com/watch?v=ajG5Yq1myMg&list=PLNmFIlsXKJMmekmO4Gh6ZBZUVZp24ltEr&index=2 PDF : http://britsol.blogspot.in/2017/10/decision-tree-algorithm-pdf.html $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
Views: 3801 fun 2 code
Machine Learning Algorithms | Machine Learning Tutorial | Data Science Training | Edureka
 
45:16
( Data Science Training - https://www.edureka.co/data-science ) This Machine Learning Algorithms Tutorial shall teach you what machine learning is, and the various ways in which you can use machine learning to solve a problem! Towards the end, you will learn how to prepare a dataset for model creation and validation and how you can create a model using any machine learning algorithm! In this Machine Learning Algorithms Tutorial video you will understand: 1) What is an Algorithm? 2) What is Machine Learning? 3) How is a problem solved using Machine Learning? 4) Types of Machine Learning 5) Machine Learning Algorithms 6) Demo Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Data Science playlist here: https://goo.gl/60NJJS #MachineLearningAlgorithms #Datasciencetutorial #Datasciencecourse #datascience How it Works? 1. There will be 30 hours of instructor-led interactive online classes, 40 hours of assignments and 20 hours of project 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. You will get Lifetime Access to the recordings in the LMS. 4. At the end of the training you will have to complete the project based on which we will provide you a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyse Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyse data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Reviews: Gnana Sekhar Vangara, Technology Lead at WellsFargo.com, says, "Edureka Data science course provided me a very good mixture of theoretical and practical training. The training course helped me in all areas that I was previously unclear about, especially concepts like Machine learning and Mahout. The training was very informative and practical. LMS pre recorded sessions and assignmemts were very good as there is a lot of information in them that will help me in my job. The trainer was able to explain difficult to understand subjects in simple terms. Edureka is my teaching GURU now...Thanks EDUREKA and all the best. "
Views: 169228 edureka!
Naïve Bayes Classifier -  Fun and Easy Machine Learning
 
11:59
Naive Bayes Classifier- Fun and Easy Machine Learning ►FREE YOLO GIFT - http://augmentedstartups.info/yolofreegiftsp ►KERAS COURSE - https://www.udemy.com/machine-learning-fun-and-easy-using-python-and-keras/?couponCode=YOUTUBE_ML ►MACHINE LEARNING COURSES - http://augmentedstartups.info/machine-learning-courses -------------------------------------------------------------------------------- Now Naïve Bayes is based on Bayes Theorem also known as conditional Theorem, which you can think of it as an evidence theorem or trust theorem. So basically how much can you trust the evidence that is coming in, and it’s a formula that describes how much you should believe the evidence that you are being presented with. An example would be a dog barking in the middle of the night. If the dog always barks for no good reason, you would become desensitized to it and not go check if anything is wrong, this is known as false positives. However if the dog barks only whenever someone enters your premises, you’d be more likely to act on the alert and trust or rely on the evidence from the dog. So Bayes theorem is a mathematic formula for how much you should trust evidence. So lets take a look deeper at the formula, • We can start of with the Prior Probability which describes the degree to which we believe the model accurately describes reality based on all of our prior information, So how probable was our hypothesis before observing the evidence. • Here we have the likelihood which describes how well the model predicts the data. This is term over here is the normalizing constant, the constant that makes the posterior density integrate to one. Like we seen over here. • And finally the output that we want is the posterior probability which represents the degree to which we believe a given model accurately describes the situation given the available data and all of our prior information. So how probable is our hypothesis given the observed evidence. So with our example above. We can view the probability that we play golf given it is sunny = the probability that we play golf given a yes times the probability it being sunny divided by probability of a yes. This uses the golf example to explain Naive Bayes. ------------------------------------------------------------ Support us on Patreon ►AugmentedStartups.info/Patreon Chat to us on Discord ►AugmentedStartups.info/discord Interact with us on Facebook ►AugmentedStartups.info/Facebook Check my latest work on Instagram ►AugmentedStartups.info/instagram Learn Advanced Tutorials on Udemy ►AugmentedStartups.info/udemy ------------------------------------------------------------ To learn more on Artificial Intelligence, Augmented Reality IoT, Deep Learning FPGAs, Arduinos, PCB Design and Image Processing then check out http://augmentedstartups.info/home Please Like and Subscribe for more videos :)
Views: 149552 Augmented Startups
Visual Diagnostics for More Informed Machine Learning Within and Beyond Scikit-Learn - PyCon 2016
 
24:21
"Speaker: Rebecca Bilbro Visualization has a critical role to play throughout the analytic process. Where static outputs and tabular data may render patterns opaque, human visual analysis can uncover volumes and lead to more robust programming and better data products. For Python programmers who dabble in machine learning, visual diagnostics are a must-have for effective feature analysis, model selection, and evaluation. Slides can be found at: https://speakerdeck.com/pycon2016 and https://github.com/PyCon/2016-slides"
Views: 1989 PyCon 2016
web scraping using python for beginners
 
11:26
Learn Python here: https://courses.learncodeonline.in/learn/Python3-course In this video, we will talk about basics of web scraping using python. This is a video for total beginners, please comment if you want more videos on web scraping fb: https://www.facebook.com/HiteshChoudharyPage homepage: http://www.hiteshChoudhary.com Download LearnCodeOnline.in app from Google play store and Apple App store
Views: 177338 Hitesh Choudhary
Data Mining with Weka (4.5: Support vector machines)
 
08:32
Data Mining with Weka: online course from the University of Waikato Class 4 - Lesson 5: Support vector machines http://weka.waikato.ac.nz/ Slides (PDF): http://goo.gl/augc8F https://twitter.com/WekaMOOC http://wekamooc.blogspot.co.nz/ Department of Computer Science University of Waikato New Zealand http://cs.waikato.ac.nz/
Views: 45730 WekaMOOC
How to Build a Text Mining, Machine Learning Document Classification System in R!
 
26:02
We show how to build a machine learning document classification system from scratch in less than 30 minutes using R. We use a text mining approach to identify the speaker of unmarked presidential campaign speeches. Applications in brand management, auditing, fraud detection, electronic medical records, and more.
Views: 165985 Timothy DAuria
NLP : Python PDF Data Extraction
 
04:24
Code : https://goo.gl/xUjhg2 Python Core ------------ Video in English https://goo.gl/df7GXL Video in Tamil https://goo.gl/LT4zEw Python Web application ---------------------- Videos in Tamil https://goo.gl/rRjs59 Videos in English https://goo.gl/spkvfv Python NLP ----------- Videos in Tamil https://goo.gl/LL4ija Videos in English https://goo.gl/TsMVfT Artificial intelligence and ML ------------------------------ Videos in Tamil https://goo.gl/VNcxUW Videos in English https://goo.gl/EiUB4P ChatBot -------- Videos in Tamil https://goo.gl/JU2WPk Videos in English https://goo.gl/KUZ7PY YouTube channel link www.youtube.com/atozknowledgevideos Website http://atozknowledge.com/ Technology in Tamil & English
Views: 11664 atoz knowledge
Jupyter Notebook Tutorial: Introduction, Setup, and Walkthrough
 
30:21
In this Python Tutorial, we will be learning how to install, setup, and use Jupyter Notebooks. Jupyter Notebooks have become very popular in the last few years, and for good reason. They allow you to create and share documents that contain live code, equations, visualizations and markdown text. This can all be run from directly in the browser. It is an essential tool to learn if you are getting started in Data Science, but will also have tons of benefits outside of that field. Let's get started. ✅ Support My Channel Through Patreon: https://www.patreon.com/coreyms ✅ Become a Channel Member: https://www.youtube.com/channel/UCCezIgC97PvUuR4_gbFUs5g/join ✅ One-Time Contribution Through PayPal: https://goo.gl/649HFY ✅ Cryptocurrency Donations: Bitcoin Wallet - 3MPH8oY2EAgbLVy7RBMinwcBntggi7qeG3 Ethereum Wallet - 0x151649418616068fB46C3598083817101d3bCD33 Litecoin Wallet - MPvEBY5fxGkmPQgocfJbxP6EmTo5UUXMot ✅ Corey's Public Amazon Wishlist http://a.co/inIyro1 ✅ Equipment I Use and Books I Recommend: https://www.amazon.com/shop/coreyschafer ▶️ You Can Find Me On: My Website - http://coreyms.com/ My Second Channel - https://www.youtube.com/c/coreymschafer Facebook - https://www.facebook.com/CoreyMSchafer Twitter - https://twitter.com/CoreyMSchafer Instagram - https://www.instagram.com/coreymschafer/ #Python
Views: 581714 Corey Schafer
Support Vector Machines - THE MATH YOU  SHOULD KNOW
 
11:21
In this video, we are going to see exactly why SVMs are so versatile by getting into the math that powers it. If you like this video and want to see more content on data Science, Machine learning, Deep Learning and AI, hit that SUBSCRIBE button. And ring that damn bell for notifications when I upload. REFERENCES [1] What is “Primal Form”: https://jeremykun.com/tag/primal/ [2] Duality in Linear Programming: http://web.mit.edu/15.053/www/AMP-Chapter-04.pdf [3] Relationship between primal and dual: https://www3.nd.edu/~dgalvin1/30210/30210_F07/presentations/dual_opt.pdf FOLLOW ME Quora: https://www.quora.com/profile/Ajay-Halthor
Views: 5481 CodeEmporium
Machine Learning Algorithms | Machine Learning Tutorial | Data Science Algorithms | Simplilearn
 
01:11:05
This Machine Learning Algorithms Tutorial video will help you learn you what is Machine Learning, various Machine Learning problems and the algorithms, key Machine Learning algorithms with simple examples and use cases implemented in Python. The key Machine Learning algorithms discussed in detail are Linear Regression, Logistic Regression, Decision Tree, Random Forest and KNN algorithm. This Machine Learning Algorithms tutorial is designed for beginners to understand which algorithm to use when, how each algorithm works and implement it on Python with real-life use cases. Below topics are covered in this Machine Learning Algorithms Tutorial: 1. Real world applications of Machine Learning 2. What is Machine Learning? 3. Processes involved in Machine Learning 4. Type of Machine Learning Algorithms 5. Popular Algorithms with hands-on demo - Linear regression - Logistic regression - Decision tree and Random forest - N Nearest neighbor What is Machine Learning: Machine Learning is an application of Artificial Intelligence (AI) that provides systems the ability to automatically learn and improve from experience without being explicitly programmed. Subscribe to our channel for more Machine Learning Tutorials: https://www.youtube.com/user/Simplilearn?sub_confirmation=1 Machine Learning Articles: https://www.simplilearn.com/what-is-artificial-intelligence-and-why-ai-certification-article?utm_campaign=Machine-Learning-Algorithms-I7NrVwm3apg&utm_medium=Tutorials&utm_source=youtube To gain in-depth knowledge of Machine Learning, check our Machine Learning certification training course: https://www.simplilearn.com/big-data-and-analytics/machine-learning-certification-training-course?utm_campaign=Machine-Learning-Algorithms-I7NrVwm3apg&utm_medium=Tutorials&utm_source=youtube #MachineLearningAlgorithms #Datasciencecourse #DataScience #SimplilearnMachineLearning #MachineLearningCourse - - - - - - - - About Simplilearn Machine Learning course: A form of artificial intelligence, Machine Learning is revolutionizing the world of computing as well as all people’s digital interactions. Machine Learning powers such innovative automated technologies as recommendation engines, facial recognition, fraud protection and even self-driving cars.This Machine Learning course prepares engineers, data scientists and other professionals with knowledge and hands-on skills required for certification and job competency in Machine Learning. - - - - - - - Why learn Machine Learning? Machine Learning is taking over the world- and with that, there is a growing need among companies for professionals to know the ins and outs of Machine Learning The Machine Learning market size is expected to grow from USD 1.03 Billion in 2016 to USD 8.81 Billion by 2022, at a Compound Annual Growth Rate (CAGR) of 44.1% during the forecast period. - - - - - - What skills will you learn from this Machine Learning course? By the end of this Machine Learning course, you will be able to: 1. Master the concepts of supervised, unsupervised and reinforcement learning concepts and modeling. 2. Gain practical mastery over principles, algorithms, and applications of Machine Learning through a hands-on approach which includes working on 28 projects and one capstone project. 3. Acquire thorough knowledge of the mathematical and heuristic aspects of Machine Learning. 4. Understand the concepts and operation of support vector machines, kernel SVM, naive Bayes, decision tree classifier, random forest classifier, logistic regression, K-nearest neighbors, K-means clustering and more. 5. Be able to model a wide variety of robust Machine Learning algorithms including deep learning, clustering, and recommendation systems - - - - - - - Who should take this Machine Learning Training Course? We recommend this Machine Learning training course for the following professionals in particular: 1. Developers aspiring to be a data scientist or Machine Learning engineer 2. Information architects who want to gain expertise in Machine Learning algorithms 3. Analytics professionals who want to work in Machine Learning or artificial intelligence 4. Graduates looking to build a career in data science and Machine Learning - - - - - - For more updates on courses and tips follow us on: - Facebook: https://www.facebook.com/Simplilearn - Twitter: https://twitter.com/simplilearn - LinkedIn: https://www.linkedin.com/company/simplilearn - Website: https://www.simplilearn.com Get the Android app: http://bit.ly/1WlVo4u Get the iOS app: http://apple.co/1HIO5J0
Views: 50077 Simplilearn
DOC: Deep Open Classification of Text Documents accepted at EMNLP 2017
 
13:54
authored by: Lei Shu, Hu Xu and Bing Liu from University of Illinois at Chicago paper link: https://arxiv.org/pdf/1709.08716.pdf *dataset and code upon request through email* abstract: Traditional supervised learning makes the closed-world assumption that the classes appeared in the test data must have appeared in training. This also applies to text learning or text classification. As learning is used increasingly in dynamic open environments where some new/test documents may not belong to any of the training classes, identifying these novel documents during classification presents an important problem. This problem is called open-world classification or open classification. This paper proposes a novel deep learning based approach. It outperforms existing state-of-the-art techniques dramatically. Continual project "UNSEEN CLASS DISCOVERY IN OPEN-WORLD CLASSIFICATION" https://arxiv.org/pdf/1801.05609.pdf shows that DOC also works on images.
Views: 352 Lei Shu
Corpus Conversion Service: A machine learning platform to ingest documents at scale
 
03:20
Authors: Peter W J Staar (IBM); Michele Dolfi (IBM); Christoph Auer (IBM); Costas Bekas (IBM) Abstract: PDF is by far the most prevalent document format today. There are roughly 2.5 trillion PDFs in circulation [ 1 ] such as scientific pub- lications, manuals, reports, contracts and more. However, content encoded in PDF is by its nature reduced to streams of printing in- structions purposed to faithfully present a visual layout. The task of automatic content reconstruction and conversion of PDF documents into structured data files has been an outstanding problem for over three decades [ 2 , 3 ]. Here, we present a solution to the problem of document conversion, which at its core uses trainable, machine learning algorithms. The central idea is that we avoid heuristic or rule-based (RB) conversion algorithms, using instead generic ma- chine learning (ML) algorithms, which produce models based on gathered ground-truth data. In this way, we eliminate the continuous tweaking of conversion rules and let the solution simply learn how to correctly convert documents by providing enough ground truth. This approach is in stark contrast to current state of the art conversion systems (both open-source and proprietary), which are all RB. While a machine learning approach might appear very natural in the current era of AI, it has serious consequences with regard to the design of such a solution. First, one should think at the level of a document collection (or a corpus of documents) as opposed to individual documents, since an ML model for a single document is not very useful. An ML model for a certain type of documents (e.g. scientific articles, regulations, contracts, etc.) obviously is. Secondly, one needs efficient tools to gather ground truth via human annotation. These annotations can then be used to train the ML models. It is clear then that leveraging ML adds an extra level of complexity: One has to provide the ability to store a collection of documents, annotate these documents, store the annotations, train models and ultimately apply these models on unseen documents. For the authors of this paper, this implied that our solution cannot be a monolithic application. Rather it was built as a cloud-based platform, which consists out of micro-services that execute the previously mentioned tasks in an efficient and scalable way. We call this platform Corpus Conversion Service (CCS). More on http://www.kdd.org/kdd2018/
Views: 989 KDD2018 video
E05 - Data Preprocessing Topics - Machine learning course free ( Data Science Alive )
 
01:48
*For the playlist , please click the below Link: https://www.youtube.com/watch?v=L7tEs7kraTQ&list=PL-1QQC56x1gGsEWQP1dZ4rOQvKyUhdttW #Data_science_alive #Machine_learning #No_1_Trending_video #Machine_learning_Python_R *Visit Our website : https://datasciencealive.wordpress.com/machine-learning/ *Please click the following link to download the dataset: https://datasciencealive.wordpress.com/data-set/ *In this session we will look into topics that will be covered on the data preprocessing techniques using pandas in python . In machine learning most of the time will be spend on data preprocessing , data mining and feature extraction . Hence please listen to this topic more carefully . *This is a Data science course . This is a full fledge course for free and we will cove all the main topics on the machine learning algorithm. This course is specifically designed to address all the queries from beginners to expert . Artificial intelligence ( AI ) is a bigger umbrella ,In that Machine learning ( ML ) and Deep Learning ( DL ) are part of Artificial Intelligence. *In this video we will have an overview on the topics that will be covered. On high level it will be *Data Preprocessing *Supervised Learning - Algorithm *Classification *Regression *Association *Unsupervised learning - Algorithm *Clustering *Dimensionality Reduction (PCA) *Semi -Supervised learning *Re- Enforcement learning *Best approach for Model selection *Intro to Deep Learning The above topics will be covered in-detail on the upcoming session which you can find it in the playlist . *For the playlist , please click the below Link: https://www.youtube.com/watch?v=L7tEs7kraTQ&list=PL-1QQC56x1gGsEWQP1dZ4rOQvKyUhdttW #Data_science_alive #Machine_learning #Machine_learning_Python_R #No_1_Trending_video
Views: 109 Data Science Alive
Build an AI Writer - Machine Learning for Hackers #8
 
05:25
This video will get you up and running with your first AI Writer able to write a short story based on an image that you input. The code for this video is here: https://github.com/llSourcell/AI_Writer I created a Slack channel for us, sign up here: https://wizards.herokuapp.com/ Great write-up on recurrent neural nets (LSTMs and GRUs) http://deeplearning4j.org/lstm.html Paper on skip thought vectors: http://arxiv.org/pdf/1506.06726v1 Paper on Unifying Visual Semantic Embeddings: https://arxiv.org/pdf/1411.2539v1.pdf You can test this code out at this site! It's really cool, they have a bunch of deep learning models in the cloud, you just have to upload an input and it gives you an output: http://www.somatic.io/models/2n6g7RZQ If you're interested in NLP, check out Michael Collins course. This guy is such a G (it's free and open source!): https://www.coursera.org/course/nlangp And check out this guy's free deep learning course on Udacity: https://www.udacity.com/course/deep-learning--ud730 I love you guys! Thanks for watching my videos, I do it for you. I left my awesome job at Twilio and I'm doing this full time now. I recently created a Patreon page. If you like my videos, feel free to help support my effort here!: https://www.patreon.com/user?ty=h&u=3191693 Much more to come so please subscribe, like, and comment. Follow me: Twitter: https://twitter.com/sirajraval Facebook: https://www.facebook.com/sirajology Instagram: https://www.instagram.com/sirajraval/ Instagram: https://www.instagram.com/sirajraval/ Signup for my newsletter for exciting updates in the field of AI: https://goo.gl/FZzJ5w Hit the Join button above to sign up to become a member of my channel for access to exclusive content!
Views: 44368 Siraj Raval
Lecture 14 - Support Vector Machines
 
01:14:16
Support Vector Machines - One of the most successful learning algorithms; getting a complex model at the price of a simple one. Lecture 14 of 18 of Caltech's Machine Learning Course - CS 156 by Professor Yaser Abu-Mostafa. View course materials in iTunes U Course App - https://itunes.apple.com/us/course/machine-learning/id515364596 and on the course website - http://work.caltech.edu/telecourse.html Produced in association with Caltech Academic Media Technologies under the Attribution-NonCommercial-NoDerivs Creative Commons License (CC BY-NC-ND). To learn more about this license, http://creativecommons.org/licenses/by-nc-nd/3.0/ This lecture was recorded on May 17, 2012, in Hameetman Auditorium at Caltech, Pasadena, CA, USA.
Views: 220769 caltech
K Means Clustering Algorithm | K Means Example in Python | Machine Learning Algorithms | Edureka
 
27:05
** Python Training for Data Science: https://www.edureka.co/python ** This Edureka Machine Learning tutorial (Machine Learning Tutorial with Python Blog: https://goo.gl/fe7ykh ) series presents another video on "K-Means Clustering Algorithm". Within the video you will learn the concepts of K-Means clustering and its implementation using python. Below are the topics covered in today's session: 1. What is Clustering? 2. Types of Clustering 3. What is K-Means Clustering? 4. How does a K-Means Algorithm works? 5. K-Means Clustering Using Python Machine Learning Tutorial Playlist: https://goo.gl/UxjTxm Subscribe to our channel to get video updates. Hit the subscribe button above. How it Works? 1. This is a 5 Week Instructor led Online Course,40 hours of assignment and 20 hours of project work 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. At the end of the training you will be working on a real time project for which we will provide you a Grade and a Verifiable Certificate! - - - - - - - - - - - - - - - - - About the Course Edureka's Python Online Certification Training will make you an expert in Python programming. It will also help you learn Python the Big data way with integration of Machine learning, Pig, Hive and Web Scraping through beautiful soup. During our Python Certification training, our instructors will help you: 1. Programmatically download and analyze data 2. Learn techniques to deal with different types of data – ordinal, categorical, encoding 3. Learn data visualization 4. Using I python notebooks, master the art of presenting step by step data analysis 5. Gain insight into the 'Roles' played by a Machine Learning Engineer 6. Describe Machine Learning 7. Work with real-time data 8. Learn tools and techniques for predictive modeling 9. Discuss Machine Learning algorithms and their implementation 10. Validate Machine Learning algorithms 11. Explain Time Series and its related concepts 12. Perform Text Mining and Sentimental analysis 13. Gain expertise to handle business in future, living the present - - - - - - - - - - - - - - - - - - - Why learn Python? Programmers love Python because of how fast and easy it is to use. Python cuts development time in half with its simple to read syntax and easy compilation feature. Debugging your programs is a breeze in Python with its built in debugger. Using Python makes Programmers more productive and their programs ultimately better. Python continues to be a favorite option for data scientists who use it for building and using Machine learning applications and other scientific computations. Python runs on Windows, Linux/Unix, Mac OS and has been ported to Java and .NET virtual machines. Python is free to use, even for the commercial products, because of its OSI-approved open source license. Python has evolved as the most preferred Language for Data Analytics and the increasing search trends on python also indicates that Python is the next "Big Thing" and a must for Professionals in the Data Analytics domain. For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Review Sairaam Varadarajan, Data Evangelist at Medtronic, Tempe, Arizona: "I took Big Data and Hadoop / Python course and I am planning to take Apache Mahout thus becoming the "customer of Edureka!". Instructors are knowledge... able and interactive in teaching. The sessions are well structured with a proper content in helping us to dive into Big Data / Python. Most of the online courses are free, edureka charges a minimal amount. Its acceptable for their hard-work in tailoring - All new advanced courses and its specific usage in industry. I am confident that, no other website which have tailored the courses like Edureka. It will help for an immediate take-off in Data Science and Hadoop working."
Views: 40029 edureka!
How to find the best model parameters in scikit-learn
 
27:46
In this video, you'll learn how to efficiently search for the optimal tuning parameters (or "hyperparameters") for your machine learning model in order to maximize its performance. I'll start by demonstrating an exhaustive "grid search" process using scikit-learn's GridSearchCV class, and then I'll compare it with RandomizedSearchCV, which can often achieve similar results in far less time. Download the notebook: https://github.com/justmarkham/scikit-learn-videos Grid search user guide: http://scikit-learn.org/stable/modules/grid_search.html GridSearchCV documentation: http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html RandomizedSearchCV documentation: http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html Comparing randomized search and grid search: http://scikit-learn.org/stable/auto_examples/model_selection/plot_randomized_search.html Randomized search video: https://youtu.be/0wUF_Ov8b0A?t=17m38s Randomized search notebook: https://github.com/amueller/pydata-nyc-advanced-sklearn/blob/master/Chapter%203%20-%20Randomized%20Hyper%20Parameter%20Search.ipynb Random Search for Hyper-Parameter Optimization: http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf WANT TO GET BETTER AT MACHINE LEARNING? HERE ARE YOUR NEXT STEPS: 1) WATCH my scikit-learn video series: https://www.youtube.com/playlist?list=PL5-da3qGB5ICeMbQuqbbCOQWcS6OYBr5A 2) SUBSCRIBE for more videos: https://www.youtube.com/dataschool?sub_confirmation=1 3) JOIN "Data School Insiders" to access bonus content: https://www.patreon.com/dataschool 4) ENROLL in my Machine Learning course: https://www.dataschool.io/learn/ 5) LET'S CONNECT! - Newsletter: https://www.dataschool.io/subscribe/ - Twitter: https://twitter.com/justmarkham - Facebook: https://www.facebook.com/DataScienceSchool/ - LinkedIn: https://www.linkedin.com/in/justmarkham/
Views: 82370 Data School
AdaBoost, Clearly Explained
 
20:54
AdaBoost is one of those machine learning methods that seems so much more confusing than it really is. It's really just a simple twist on decision trees and random forests. NOTE: This video assumes you already know about Decision Trees... https://youtu.be/7VeUPuFGJHk ...and Random Forests.... https://youtu.be/J4Wdy0Wc_xQ For a complete index of all the StatQuest videos, check out: https://statquest.org/video-index/ Sources: The original AdaBoost paper by Robert E. Schapire and Yoav Freund https://www.sciencedirect.com/science/article/pii/S002200009791504X And a follow up by co-created Schapire: http://rob.schapire.net/papers/explaining-adaboost.pdf The idea of using the weights to resample the original dataset comes from Boosting Foundations and Algorithms, by Robert E. Schapire and Yoav Freund https://mitpress.mit.edu/books/boosting Lastly, Chris McCormick's tutorial was super helpful: http://mccormickml.com/2013/12/13/adaboost-tutorial/ If you'd like to support StatQuest, please consider a cool StatQuest t-shirt or sweatshirt... https://teespring.com/stores/statquest ...or buying one or two of my songs (or go large and get a whole album!) https://joshuastarmer.bandcamp.com/ Lastly, if you want to keep up with me as I research and create new StatQuests, follow me on twitter: https://twitter.com/joshuastarmer
PDF Data Extraction and Automation 3.1
 
14:04
Learn how to read and extract PDF data. Whether in native text format or scanned images, UiPath allows you to navigate, identify and use PDF data however you need. Read PDF. Read PDF with OCR.
Views: 136551 UiPath
Advanced Data Mining with Weka (5.4: Invoking Weka from Python)
 
10:19
Advanced Data Mining with Weka: online course from the University of Waikato Class 5 - Lesson 4: Invoking Weka from Python http://weka.waikato.ac.nz/ Slides (PDF): https://goo.gl/7XXl63 https://twitter.com/WekaMOOC http://wekamooc.blogspot.co.nz/ Department of Computer Science University of Waikato New Zealand http://cs.waikato.ac.nz/
Views: 3305 WekaMOOC
Scanner: Efficient Video Analysis at Scale (SIGGRAPH 2018)
 
04:50
http://scanner.run/ http://graphics.stanford.edu/papers/scanner/scanner_sig18.pdf Scanner is a system for developing applications that efficiently process large video datasets. Scanner applications can run on a multi-core laptop, a server packed with multiple GPUs, or a large number of machines in the cloud. Scanner has been used for: * Labeling and data mining large video collections: Scanner is in use at Stanford University as the compute engine for visual data mining applications that detect people, commercials, human poses, etc. in datasets as big as 70,000 hours of TV news (12 billion frames, 20 TB) or 600 feature length movies (106 million frames). * VR Video synthesis: scaling the Surround 360 VR video stitching software, which processes fourteen 2048x2048 input videos to produce 8k stereo video output. To learn more about Scanner, see the documentation below or read the SIGGRAPH 2018 Technical Paper: “Scanner: Efficient Video Analysis at Scale” by Poms, Crichton, Hanrahan, and Fatahalian.
Views: 1952 Will Crichton
17. Learning: Boosting
 
51:40
MIT 6.034 Artificial Intelligence, Fall 2010 View the complete course: http://ocw.mit.edu/6-034F10 Instructor: Patrick Winston Can multiple weak classifiers be used to make a strong one? We examine the boosting algorithm, which adjusts the weight of each classifier, and work through the math. We end with how boosting doesn't seem to overfit, and mention some applications. License: Creative Commons BY-NC-SA More information at http://ocw.mit.edu/terms More courses at http://ocw.mit.edu
Views: 177320 MIT OpenCourseWare
Ephesoft Transact Machine Learning Data Extraction - Part 2
 
10:20
This is part II in a series of videos showing Ephesoft’s Document & Process Machine Learning capabilities (Part I is titled: Intelligent Document Capture, OCR and Machine Learning - Part 1 ) . In this video, it will show how you can add intelligence to any document capture process through learning external data tables. This allows for leveraging pre-existing ERP and financial system information to make the Ephesoft System smarter.
Views: 1634 Ephesoft, Inc.
MicroStrategy - Data Mining & Predictive Analytics - Online Training Video by MicroRooster
 
21:27
Source: MicroRooster.blogspot.com Format: A MicroStrategy Online Training Video blog. Description: An introduction to Data Mining & Predictive Analytics using MicroStrategy. This demo explains how to use MicroStrategy for performing advanced data science analysis. Must have some understanding of basic data mining to take advantage of this entry level demo.
Views: 17081 MicroRooster
An Introduction to Linear Regression Analysis
 
05:18
Tutorial introducing the idea of linear regression analysis and the least square method. Typically used in a statistics class. Playlist on Linear Regression http://www.youtube.com/course?list=ECF596A4043DBEAE9C Like us on: http://www.facebook.com/PartyMoreStudyLess Created by David Longstreet, Professor of the Universe, MyBookSucks http://www.linkedin.com/in/davidlongstreet
Views: 764462 statisticsfun
Qualitative and Quantitative research in hindi  | HMI series
 
08:00
For full course:https://goo.gl/J9Fgo7 HMI notes form : https://goo.gl/forms/W81y9DtAJGModoZF3 Topic wise: HMI(human machine interaction):https://goo.gl/bdZVyu 3 level of processing:https://goo.gl/YDyj1K Fundamental principle of interaction:https://goo.gl/xCqzoL Norman Seven stages of action : https://goo.gl/vdrVFC Human Centric Design : https://goo.gl/Pfikhf Goal directed Design : https://goo.gl/yUtifk Qualitative and Quantitative research:https://goo.gl/a3izUE Interview Techniques for Qualitative Research :https://goo.gl/AYQHhF Gestalt Principles : https://goo.gl/Jto36p GUI ( Graphical user interface ) Full concept : https://goo.gl/2oWqgN Advantages and Disadvantages of Graphical System (GUI) : https://goo.gl/HxiSjR Design an KIOSK:https://goo.gl/Z1eizX Design mobile app and portal sum:https://goo.gl/6nF3UK whatsapp: 7038604912
Views: 86977 Last moment tuitions
Advanced Data Mining with Weka (1.6: Application: Infrared data from soil samples)
 
12:49
Advanced Data Mining with Weka: online course from the University of Waikato Class 1 - Lesson 6: Infrared data from soil samples http://weka.waikato.ac.nz/ Slides (PDF): https://goo.gl/JyCK84 https://twitter.com/WekaMOOC http://wekamooc.blogspot.co.nz/ Department of Computer Science University of Waikato New Zealand http://cs.waikato.ac.nz/
Views: 2057 WekaMOOC
Random Forest Tutorial | Random Forest in R | Machine Learning | Data Science Training | Edureka
 
01:07:14
( Data Science Training - https://www.edureka.co/data-science ) This Edureka Random Forest tutorial will help you understand all the basics of Random Forest machine learning algorithm. This tutorial is ideal for both beginners as well as professionals who want to learn or brush up their Data Science concepts, learn random forest analysis along with examples. Below are the topics covered in this tutorial: 1) Introduction to Classification 2) Why Random Forest? 3) What is Random Forest? 4) Random Forest Use Cases 5) How Random Forest Works? 6) Demo in R: Diabetes Prevention Use Case Subscribe to our channel to get video updates. Hit the subscribe button above. Check our complete Data Science playlist here: https://goo.gl/60NJJS #RandomForest #Datasciencetutorial #Datasciencecourse #datascience How it Works? 1. There will be 30 hours of instructor-led interactive online classes, 40 hours of assignments and 20 hours of project 2. We have a 24x7 One-on-One LIVE Technical Support to help you with any problems you might face or any clarifications you may require during the course. 3. You will get Lifetime Access to the recordings in the LMS. 4. At the end of the training you will have to complete the project based on which we will provide you a Verifiable Certificate! - - - - - - - - - - - - - - About the Course Edureka's Data Science course will cover the whole data life cycle ranging from Data Acquisition and Data Storage using R-Hadoop concepts, Applying modelling through R programming using Machine learning algorithms and illustrate impeccable Data Visualization by leveraging on 'R' capabilities. - - - - - - - - - - - - - - Why Learn Data Science? Data Science training certifies you with ‘in demand’ Big Data Technologies to help you grab the top paying Data Science job title with Big Data skills and expertise in R programming, Machine Learning and Hadoop framework. After the completion of the Data Science course, you should be able to: 1. Gain insight into the 'Roles' played by a Data Scientist 2. Analyse Big Data using R, Hadoop and Machine Learning 3. Understand the Data Analysis Life Cycle 4. Work with different data formats like XML, CSV and SAS, SPSS, etc. 5. Learn tools and techniques for data transformation 6. Understand Data Mining techniques and their implementation 7. Analyse data using machine learning algorithms in R 8. Work with Hadoop Mappers and Reducers to analyze data 9. Implement various Machine Learning Algorithms in Apache Mahout 10. Gain insight into data visualization and optimization techniques 11. Explore the parallel processing feature in R - - - - - - - - - - - - - - Who should go for this course? The course is designed for all those who want to learn machine learning techniques with implementation in R language, and wish to apply these techniques on Big Data. The following professionals can go for this course: 1. Developers aspiring to be a 'Data Scientist' 2. Analytics Managers who are leading a team of analysts 3. SAS/SPSS Professionals looking to gain understanding in Big Data Analytics 4. Business Analysts who want to understand Machine Learning (ML) Techniques 5. Information Architects who want to gain expertise in Predictive Analytics 6. 'R' professionals who want to captivate and analyze Big Data 7. Hadoop Professionals who want to learn R and ML techniques 8. Analysts wanting to understand Data Science methodologies For more information, Please write back to us at [email protected] or call us at IND: 9606058406 / US: 18338555775 (toll free). Instagram: https://www.instagram.com/edureka_learning/ Facebook: https://www.facebook.com/edurekaIN/ Twitter: https://twitter.com/edurekain LinkedIn: https://www.linkedin.com/company/edureka Customer Reviews: Gnana Sekhar Vangara, Technology Lead at WellsFargo.com, says, "Edureka Data science course provided me a very good mixture of theoretical and practical training. The training course helped me in all areas that I was previously unclear about, especially concepts like Machine learning and Mahout. The training was very informative and practical. LMS pre recorded sessions and assignmemts were very good as there is a lot of information in them that will help me in my job. The trainer was able to explain difficult to understand subjects in simple terms. Edureka is my teaching GURU now...Thanks EDUREKA and all the best. "
Views: 59844 edureka!
Lecture 02: Python for Data Mining (1/2) | CSC 5741 | UNZA
 
02:27:42
Lecture 2: Python for Data Mining and Machine Learning [1]. Term I, University of Zambia [2] MSc CS first year Data Mining and Warehousing [3] screencasts. These were live and unscripted sessions, so---for posterity---please do share comments/fixes in the comment box if you spot an error or something that might require clarification. Video recording/screencasting was done using ffmpeg [4] and SmartRecorder [5] on a OnePlus 3T connected with a smartLav+ RØDE microphone [6]. [1] http://lis.unza.zm/~lightonphiri/teaching/unza/2019/csc5741/handouts/notes-unza19-csc5741_lecture-02.pdf [2] http://www.unza.zm [3] http://lis.unza.zm/~lightonphiri/teaching/unza/2019/csc5741 [4] https://www.ffmpeg.org [5] https://play.google.com/store/apps/details?id=com.andrwq.recorder&hl=en [6] http://www.rode.com/microphones/smartlav
Views: 3 Lighton Phiri
Support Vector Machine - How Support Vector Machine Works | SVM In Machine Learning | Simplilearn
 
26:43
This Support Vector Machine (SVM) tutorial video will help you understand Support Vector Machine algorithm, a supervised machine learning algorithm which can be used for both classification and regression problems. This SVM tutorial video will help you learn where and when to use SVM algorithm, how does the algorithm work, what are hyperplanes and support vectors in SVM, how distance margin helps in optimizing the hyperplane, kernel functions in SVM for data transformation and advantages of SVM algorithm. At the end, we will also implement Support Vector Machine algorithm in Python to differentiate crocodiles from alligators for a given dataset. Below topics are explained in this Support Vector Machine Tutorial: 1. What is Machine Learning? ( 01:04 ) 2. Why support vector machine? ( 01:58 ) 3. What is support vector machine? ( 03:39 ) 4. Understanding support vector machine ( 06:39 ) 5. Advantages of support vector machine ( 07:59 ) 6. Use case in Python ( 09:15 ) Subscribe to our channel for more Machine Learning Tutorials: https://www.youtube.com/user/Simplilearn?sub_confirmation=1 Machine Learning Articles: https://www.simplilearn.com/what-is-artificial-intelligence-and-why-ai-certification-article?utm_campaign=Support-Vector-machine-Tutorial-TtKF996oEl8&utm_medium=Tutorials&utm_source=youtube To gain in-depth knowledge of Machine Learning, check our Machine Learning certification training course: https://www.simplilearn.com/big-data-and-analytics/machine-learning-certification-training-course?utm_campaign=Support-Vector-machine-Tutorial-TtKF996oEl8&utm_medium=Tutorials&utm_source=youtube #MachineLearningAlgorithms #Datasciencecourse #DataScience #SimplilearnMachineLearning #MachineLearningCourse - - - - - - - - About Simplilearn Machine Learning course: A form of artificial intelligence, Machine Learning is revolutionizing the world of computing as well as all people’s digital interactions. Machine Learning powers such innovative automated technologies as recommendation engines, facial recognition, fraud protection and even self-driving cars.This Machine Learning course prepares engineers, data scientists and other professionals with knowledge and hands-on skills required for certification and job competency in Machine Learning. - - - - - - - Why learn Machine Learning? Machine Learning is taking over the world- and with that, there is a growing need among companies for professionals to know the ins and outs of Machine Learning The Machine Learning market size is expected to grow from USD 1.03 Billion in 2016 to USD 8.81 Billion by 2022, at a Compound Annual Growth Rate (CAGR) of 44.1% during the forecast period. - - - - - - What skills will you learn from this Machine Learning course? By the end of this Machine Learning course, you will be able to: 1. Master the concepts of supervised, unsupervised and reinforcement learning concepts and modeling. 2. Gain practical mastery over principles, algorithms, and applications of Machine Learning through a hands-on approach which includes working on 28 projects and one capstone project. 3. Acquire thorough knowledge of the mathematical and heuristic aspects of Machine Learning. 4. Understand the concepts and operation of support vector machines, kernel SVM, Naive Bayes, decision tree classifier, random forest classifier, logistic regression, K-nearest neighbors, K-means clustering and more. 5. Be able to model a wide variety of robust Machine Learning algorithms including deep learning, clustering, and recommendation systems - - - - - - - Who should take this Machine Learning Training Course? We recommend this Machine Learning training course for the following professionals in particular: 1. Developers aspiring to be a data scientist or Machine Learning engineer 2. Information architects who want to gain expertise in Machine Learning algorithms 3. Analytics professionals who want to work in Machine Learning or artificial intelligence - - - - - - For more updates on courses and tips follow us on: - Facebook: https://www.facebook.com/Simplilearn - Twitter: https://twitter.com/simplilearn - LinkedIn: https://www.linkedin.com/company/simplilearn - Website: https://www.simplilearn.com Get the Android app: http://bit.ly/1WlVo4u Get the iOS app: http://apple.co/1HIO5J0
Views: 43992 Simplilearn
Science Beam – using computer vision to extract PDF data
 
01:03
There’s a vast trove of science out there locked inside the PDF format. From preprints to peer-reviewed literature and historical research, millions of scientific manuscripts can only be found in a print-era format that is effectively inaccessible. A move away from PDF and toward a more open and flexible format like XML would unlock a multitude of use cases for the discovery and reuse of existing research. We are embarking on a project to convert PDF to XML and improve the accuracy of the XML output by building on existing open-source tools. One aim of the project is to combine some of these tools in a modular conversion pipeline that achieves a better overall conversion result compared to using the tools on their own. In addition, we are experimenting with a novel approach to the problem: using computer vision to identify key components of the scientific manuscript in PDF format. We are calling on the community to help us move this project forward. We hope that as a community-driven effort we’ll make more rapid progress towards the vision of transforming PDFs into structured data with high accuracy. You can explore the project on GitHub: https://github.com/elifesciences/sciencebeam. Your ideas, feedback, and contributions are welcome by email to [email protected] Read More about Science Beam Project https://researchstash.com/2017/08/05/science-beam-using-computer-vision-to-extract-pdf-data/
Views: 193 Research Stash
Ensembles (3): Gradient Boosting
 
11:49
Gradient boosting ensemble technique for regression
Views: 100819 Alexander Ihler
Machine Learning Interview Questions And Answers | Data Science Interview Questions | Simplilearn
 
01:13:04
This Machine Learning Interview Questions And Answers video will help you prepare for Data Science and Machine learning interviews. This video is ideal for both beginners as well as professionals who are appearing for Machine Learning or Data Science interviews. Learn what are the most important Machine Learning interview questions and answers and know what will set you apart in the interview process. Some of the important Machine Learning Interview Questions are listed below: 1. What are the different types of Machine Learning? 2. What is overfitting? And how can you avoid it? 3. What is false positive and false negative and how are they significant? 4. What are the three stages to build a model in Machine Learning? 5. What is Deep Learning? 6. What are the differences between Machine Learning and Deep Learning? 7. What are the applications of supervised Machine Learning in modern businesses? 8. What is semi-supervised Machine Learning? 9. What are the unsupervised Machine Learning techniques? 10. What is the difference between supervised and unsupervised Machine Learning? 11. What is the difference between inductive Machine Learning and deductive Machine Learning? 12. What is 'naive' in the Naive Bayes classifier? 13. What are Support Vector Machines? 14. How is Amazon able to recommend other things to buy? How does it work? 15. When will you use classification over regression? 16. How will you design an email spam filter? 17. What is Random Forest? 18. What is bias and variance in a Machine Learning model? 19. What’s the trade-off between bias and variance? 20. What is pruning in decision trees and how is it done? Subscribe to our channel for more Machine Learning Tutorials: https://www.youtube.com/user/Simplilearn?sub_confirmation=1 Machine Learning Articles: https://www.simplilearn.com/what-is-artificial-intelligence-and-why-ai-certification-article?utm_campaign=Machine-Learning-interview-Questions-and-answers-hB1CTizqGFk&utm_medium=Tutorials&utm_source=youtube To gain in-depth knowledge of Machine Learning, check our Machine Learning certification training course: https://www.simplilearn.com/big-data-and-analytics/machine-learning-certification-training-course?utm_campaign=Machine-Learning-interview-Questions-and-answers-hB1CTizqGFk&utm_medium=Tutorials&utm_source=youtube You can also go through the Slides here: https://goo.gl/rmzjaQ #MachineLearningAlgorithms #Datasciencecourse #DataScience #SimplilearnMachineLearning #MachineLearningCourse - - - - - - - Why learn Machine Learning? Machine Learning is taking over the world- and with that, there is a growing need among companies for professionals to know the ins and outs of Machine Learning The Machine Learning market size is expected to grow from USD 1.03 Billion in 2016 to USD 8.81 Billion by 2022, at a Compound Annual Growth Rate (CAGR) of 44.1% during the forecast period. - - - - - - What skills will you learn from this Machine Learning course? By the end of this Machine Learning course, you will be able to: 1. Master the concepts of supervised, unsupervised and reinforcement learning concepts and modeling. 2. Gain practical mastery over principles, algorithms, and applications of Machine Learning through a hands-on approach which includes working on 28 projects and one capstone project. 3. Acquire thorough knowledge of the mathematical and heuristic aspects of Machine Learning. 4. Understand the concepts and operation of support vector machines, kernel SVM, Naive Bayes, decision tree classifier, random forest classifier, logistic regression, K-nearest neighbors, K-means clustering and more. 5. Be able to model a wide variety of robust Machine Learning algorithms including deep learning, clustering, and recommendation systems - - - - - - - Who should take this Machine Learning Training Course? We recommend this Machine Learning training course for the following professionals in particular: 1. Developers aspiring to be a data scientist or Machine Learning engineer 2. Information architects who want to gain expertise in Machine Learning algorithms 3. Analytics professionals who want to work in Machine Learning or artificial intelligence - - - - - - For more updates on courses and tips follow us on: - Facebook: https://www.facebook.com/Simplilearn - Twitter: https://twitter.com/simplilearn - LinkedIn: https://www.linkedin.com/company/simplilearn - Website: https://www.simplilearn.com Get the Android app: http://bit.ly/1WlVo4u Get the iOS app: http://apple.co/1HIO5J0
Views: 46781 Simplilearn
A.I. Is Monitoring You Right Now and Here’s How It's Using Your Data
 
04:57
There's wisdom in crowds, and scientists are applying artificial intelligence and machine learning to better predict global crises and outbreaks. Read More: You Could Live On One Of These Moons With an Oxygen Mask and Heavy Jacket https://www.youtube.com/watch?v=9t0Cziw6AbI Subscribe! https://www.youtube.com/user/DNewsChannel Read More: Identifying Behaviors in Crowd Scenes Using Stability Analysis for Dynamical Systems http://crcv.ucf.edu/papers/pamiLatest.pdf “A method is proposed for identifying five crowd behaviors (bottlenecks, fountainheads, lanes, arches, and blocking) in visual scenes.” Tracking in High Density Crowds Data Set http://crcv.ucf.edu/data/tracking.php “The Static Floor Field is aimed at capturing attractive and constant properties of the scene. These properties include preferred areas, such as dominant paths often taken by the crowd as it moves through the scene, and preferred exit locations.” Can Crowds Predict the Future? https://www.smithsonianmag.com/smart-news/can-crowds-predict-the-future-180948116/ “The Good Judgement Project is using the IARPA game as “a vehicle for social-science research to determine the most effective means of eliciting and aggregating geopolitical forecasts from a widely dispersed forecaster pool.” ____________________ Seeker inspires us to see the world through the lens of science and evokes a sense of curiosity, optimism and adventure. Visit the Seeker website https://www.seeker.com/ Subscribe now! https://www.youtube.com/user/DNewsChannel Seeker on Twitter http://twitter.com/seeker Seeker on Facebook https://www.facebook.com/SeekerMedia/ Seeker http://www.seeker.com/
Views: 145289 Seeker
Soft Margin SVM and Kernels with CVXOPT - Practical Machine Learning Tutorial with Python p.32
 
11:11
In this tutorial, we cover the Soft Margin SVM, along with Kernels and quadratic programming with CVXOPT all in one quick tutorial using some example code from: http://www.mblondel.org/journal/2010/09/19/support-vector-machines-in-python/ Visualizing the conversion of many dimensions back to 2D: https://www.youtube.com/watch?v=3liCbRZPrZA Quadratic programming with CVXOPT: http://cvxopt.org/userguide/coneprog.html#quadratic-programming Docs qp example: http://cvxopt.org/examples/tutorial/qp.html Another CVXOPT tutorial: https://courses.csail.mit.edu/6.867/wiki/images/a/a7/Qp-cvxopt.pdf https://pythonprogramming.net https://twitter.com/sentdex https://www.facebook.com/pythonprogramming.net/ https://plus.google.com/+sentdex
Views: 26162 sentdex
Advanced Analytics with R and SQL
 
59:22
R is the lingua franca of Analytics. SQL is the world’s most popular database language. What magic can you make happen by combining the power of R and SQL for Data Science and Advanced Analytics? Imagine the power of exploring, transforming, modeling, and scoring data at scale from the comfort of your favorite R environment. Now, imagine operationalizing the models you create directly in SQL Server, allowing your applications to use them from T-SQL, executed right where your data resides. Come learn how to build and deploy intelligent applications that combine the power of R, SQL Server, thousands of open source R extension packages, and high-performance implementations of the most popular machine learning algorithms at scale.
From Data to Knowledge - 206 - Joao Gama
 
58:36
Slides: http://lyra.berkeley.edu/CDIConf/pdfs/JGama-2012.pdf Joao Gama: "Challenges on Mining Evolving Data Streams". A video from the UC Berkeley Conference: From Data to Knowledge: Machine-Learning with Real-time and Streaming Applications (May 7-11, 2012). Abstract Joao Gama (Lab. of A.I. and Decision Support, Economics at Univ. of Porto, Portugal) The computational model of data streams imposes new challenges and open new research opportunities on the design of data mining algorithms. Data is abundant, being continuously generated from time-changing processes with unknown dynamics. Evolving time-changing data requires that learning algorithms must be able to monitor the evolution of the learning process. Monitoring the learning process opens the ability of predictive self-diagnosis; not only after a failure has occurred, but also predictive, before the failure. These aspects require monitoring the evolution of the learning process, taking into account the available resources. Diagnosis is a significant and useful characteristic, and requires the ability of reasoning and learning about the learning process itself. In this talk we present a one-pass classification algorithm able for self-diagnosis. It is able to detect and react to changes in the process generating data, identifies contexts using drift detection, characterize contexts using meta-learning, and select the most appropriate base model for the incoming data using unlabeled examples.
Views: 320 ckleinastro
Bruno Goncalves, Anastasios Noulas: Mining Georeferenced Data
 
01:28:22
PyData NYC 2015 The democratization of GPS enabled devices has led to a surge of interest in the availability of high quality geocoded datasets. This data poses both opportunities and challenges for the study of social behavior. The goal of this tutorial is to introduce its attendants to the state-of-the-art in the mining and analysis in this new world of spatial data with a special focus on the real world. In this tutorial we will provide an overview of workflows for location rich data, from data collection to analysis and visualization using Python tools. In particular: Introduction to location rich data: In this part tutorial attendees will be provided with an overview perspective on location-based technologies, datasets, applications and services Online Data Collection: A brief introductions to the APIs of Twitter, Foursquare, Uber and AirBnB using Python (using urllib2, requests, BeautifulSoup). The focus will be on highlighting their similarities and differences and how they provide different perspectives on user behavior and urban activity. A special reference will be provided on the availability of Open Datasets with a notable example being the NYC Yellow Taxi dataset (NYC Taxy) Data analysis and Measurement: Using data collected using the APIs listed above we will perform several simple analyses to illustrate not only different techniques and libraries (geopy, shapely, data science toolkit, etc) but also the different kinds of insights that are possible to obtain using this kind of data, particularly on the study of population demographics, human mobility, urban activity and neighborhood modeling as well as spatial economics. Applied Data Mining and Machine Learning: In this part of the tutorial we will focus on exploiting the datasets collected in the previous part to solve interesting real world problems. After a brief introduction on python’s machine learning library, scikit-learn, we will formulate three optimization problems: i) predict the best area in New York City for opening a Starbucks using Foursquare check-in data, ii) predict the price of an Airbnb listing and iii) predict the average Uber surge multiplier of an area in New York City. Visualization: Finally, we introduce some simple techniques for mapping location data and placing it in a geographical context using matplotlib Basemap and py.processing. Slides available here: http://www.slideshare.net/bgoncalves/mining-georeferenced-data Code here: https://github.com/bmtgoncalves/Mining-Georeferenced-Data
Views: 1199 PyData
Text Mining with Machine Learning and Python: Word Search Versus Entity Extraction| packtpub.com
 
03:25
This video tutorial has been taken from Text Mining with Machine Learning and Python. You can learn more and buy the full video course here [http://bit.ly/2IKNwe0] Find us on Facebook -- http://www.facebook.com/Packtvideo Follow us on Twitter - http://www.twitter.com/packtvideo
Views: 293 Packt Video
SAS Visual Analytics 7.3 (on SAS 9) Decision Tree Demo
 
02:38
http://www.sas.com/visualanalytics The powerful decision tree algorithms in SAS Visual Analytics help you go beyond reporting and put analytics into the hands of more users. GET FREE TRIAL OF SAS VISUAL ANALYTICS Browse sample reports or explore on your own with this cloud-based demo. SAS VISUAL ANALYTICS Data visualization software that offers full-size power for any size budget. Get fast answers to even the most complex questions using data of any size – including big data in Hadoop. Guided exploration makes it easy. In-memory processing makes it fast. Advanced data visualization tools make it clear. Scalability makes it the perfect fit. And the price makes it within your reach. LEARN MORE ABOUT SAS VISUAL ANALYTICS http://www.sas.com/tryva DOWNLOAD SAS VISUAL ANALYTICS FACT SHEET http://www.sas.com/content/dam/SAS/en_us/doc/factsheet/sas-visual-analytics-105682.pdf SUBSCRIBE TO THE SAS SOFTWARE YOUTUBE CHANNEL http://www.youtube.com/subscription_center?add_user=sassoftware ABOUT SAS SAS is the leader in business analytics software and services, and the largest independent vendor in the business intelligence market. Through innovative solutions, SAS helps customers at more than 75,000 sites improve performance and deliver value by making better decisions faster. Since 1976 SAS has been giving customers around the world The Power to Know.® VISIT SAS http://www.sas.com CONNECT WITH SAS SAS ► http://www.sas.com SAS Customer Support ► http://support.sas.com SAS Communities ► http://communities.sas.com Facebook ► https://www.facebook.com/SASsoftware Twitter ► https://www.twitter.com/SASsoftware LinkedIn ► http://www.linkedin.com/company/sas Google+ ► https://plus.google.com/+sassoftware Blogs ► http://blogs.sas.com RSS ►http://www.sas.com/rss
Views: 6891 SAS Software
Modeling Data Streams Using Sparse Distributed Representations
 
25:07
In this screencast, Jeff Hawkins narrates the presentation he gave at a workshop called "From Data to Knowledge: Machine-Learning with Real-time and Streaming Applications." The workshop was held May 7-11, 2012 at the University of California, Berkeley. Slides: http://www.numenta.com/htm-overview/05-08-2012-Berkeley.pdf Abstract: Sparse distributed representations appear to be the means by which brains encode information. They have several advantageous properties including the ability to encode semantic meaning. We have created a distributed memory system for learning sequences of sparse distribute representations. In addition we have created a means of encoding structured and unstructured data into sparse distributed representations. The resulting memory system learns in an on-line fashion making it suitable for high velocity data streams. We are currently applying it to commercially valuable data streams for prediction, classification, and anomaly detection In this talk I will describe this distributed memory system and illustrate how it can be used to build models and make predictions from data streams. Live video recording of this presentation: http://www.youtube.com/watch?v=nfUT3UbYhjM General information can be found at https://www.numenta.com, and technical details can be found in the CLA white paper at https://www.numenta.com/faq.html#cla_paper.
Views: 20557 Numenta

Temperature in livermore california
Suburban extended stay albuquerque nm
Babysitter new york
Ohio high school football rankings
Msu new jersey